
Explainable and Efficient Randomized Voting Rules

Soroush Ebadian
University of Toronto

soroush@cs.toronto.edu

Aris Filos-Ratsikas
University of Edinburgh

Aris.Filos-Ratsikas@ed.ac.uk

Mohamad Latifian
University of Toronto

latifian@cs.toronto.edu

Nisarg Shah
University of Toronto

nisarg@cs.toronto.edu

Abstract

With a rapid growth in the deployment of AI tools for making critical decisions
(or aiding humans in doing so), there is a growing demand to be able to explain
to the stakeholders how these tools arrive at a decision. Consequently, voting is
frequently used to make such decisions due to its inherent explainability. Recent
work suggests that using randomized (as opposed to deterministic) voting rules
can lead to significant efficiency gains measured via the distortion framework.
However, rules that use intricate randomization can often become too complex to
explain to the stakeholders; losing explainability can eliminate the key advantage
of voting over black-box AI tools, which may outweigh the efficiency gains.
We study the efficiency gains which can be unlocked by using voting rules that add
a simple randomization step to a deterministic rule, thereby retaining explainability.
We focus on two such families of rules, randomized positional scoring rules and
random committee member rules, and show, theoretically and empirically, that they
indeed achieve explainability and efficiency simultaneously to some extent.

1 Introduction

In the past decade, AI and machine learning solutions have been deployed ubiquitously to make
increasingly critical decisions that affect human lives. Consequently, there is a growing demand
for these models and their decisions to be explainable [1, 2]. The literature makes a distinction
between two types of explanations: outcome explanations, which explain to the stakeholders why
the chosen outcome was selected in a given instance, and procedural explanations, which explain
to the stakeholders the procedure of choosing outcomes across all possible instances.1 Much of
the explainable AI (XAI) literature focuses on outcome explanations because many black-box AI
solutions used in practice are too complex to admit simple procedural explanations [3].

However, there are several drawbacks of outcome explanations. First, it opens up the possibility
of post-hoc explanations for why an outcome was selected. These are susceptible to adversarial
reasoning that hides biases [4]. Also, psychological research suggests that people’s perception of
fairness of an outcome depends not only on the outcome itself, but also on the process by which the
outcome is selected [5, 6], and the same outcome may be perceived as fair or unfair depending on
the process used [6]. This motivates the need for procedural explanations. Note that an intuitive
explanation of the procedure to select outcomes already serves as a rudimentary justification for why
a given outcome was selected.

To that end, we turn our attention to voting. While explainability is a nascent demand in the AI
ecosystem, voting rules, historically deployed for political decision-making, have always battled

1There exists a similar distinction between outcome fairness and procedural fairness.



with the need to be able to explain to the voters how the winner of an election is chosen. Thus,
most prominent voting rules admit intuitive procedural explanations. Due to this key advantage over
black-box AI solutions, they have been used to automate decision-making in a variety of applications
such as designing recommender systems [7, 8], information extraction [9], collaborative filtering [10],
ensemble learning [11], and game-playing by AI agents [12]. The advantage is more apparent when
the decisions at hand are more significant. For example, Noothigattu et al. [13] and Kahng et al. [14]
propose the design of a voting-based virtual democracy system that can automate ethical decision-
making in AI systems. When Lee et al. [15] applied this framework to automate the distribution of
food donations, they found that their stakeholders appreciated the fact that voting-based decision-
making “embodied democratic values” and being able to provide easy explanations “allowed them
to understand how algorithmic recommendations were made”.

However, most prominent voting rules are deterministic because their primary use case is making
infrequent, high-stakes democratic decisions, for which randomization is generally unpalatable [16].
Aside from selected applications such as forming citizens’ assemblies, juries, and independent
redistricting commissions, lottery is seldom used to select representatives [17]. But in AI applications,
it is common to make frequent, low-stakes decisions, for which randomization is well-suited.

Research on voting theory suggests that allowing the voting rule to randomize has numerous benefits.
It can be essential for avoiding the tyranny of the majority and guarantee minority representation [18,
19]. Randomization also acts as a barrier to manipulations by strategic agents by circumventing the
Gibbard-Satterthwaite impossibility [20, 21]. Most importantly, it can unlock significant efficiency
gains over using deterministic voting rules [22, 23, 19]. Unfortunately, randomized voting rules
designed to optimize for efficiency can be highly complex and rely on intricate mathematical results
such as the minimax theorem [19], making them difficult to explain to the end users.

In view of this, we explore the use of explainable randomized voting rules for improving the efficiency
of automated decision-making. To ensure explainability, one possibility is to use only extremely
simple randomized rules such as random dictatorship, where the most preferred option of a randomly
chosen agent is selected. But this may leave significant possible efficiency gains on the table. Instead,
we propose a hybrid approach that adds a simple (and thus, explainable) randomization step to
well-understood deterministic decision-making processes. This drives our main research question:

What efficiency gains can be unlocked by explainable randomized voting rules
which add a simple randomization step to deterministic voting rules?

As a yardstick for efficiency, we turn to the distortion framework [24]. Proposed by Procaccia and
Rosenschein [25], this framework posits that votes submitted by agents, typically rankings over a
set of alternatives, are induced by more expressive preferences underneath, typically cardinal utility
functions over the alternatives. In this framework, the goal of a randomized voting rule is to choose a
lottery over the alternatives that minimizes distortion, the worst-case ratio between maximum social
welfare (total utility to the agents) and that of the chosen lottery.

We study the distortion of two families of randomized voting rules, which we refer to as randomized
positional scoring rules and random committee member rules. The former builds on the widely-
popular family of (deterministic) positional scoring rules, under which each agent assigns a score
to each alternative based on its position in her ranking. But instead of deterministically selecting
an alternative with the highest total score, each alternative is selected with probability proportional
to its score. In contrast to picking alternatives with varying probabilities, the latter family utilizes
the simplicity of uniform randomization by picking, uniformly at random, a member of a subset of
alternatives chosen deterministically. Our inspiration for these two families stems from the use of
such rules by Boutilier et al. [22] and Ebadian et al. [19].

Let us illustrate an example rule from each family based on the popular Borda count method, in
which scores of m− 1, . . . , 0 are assigned to ranks 1, . . . ,m respectively. A rule from the first family
would pick each alternative with probability proportional to its total Borda score, while a rule from
the second family may select uniformly at random among the k alternatives with the highest Borda
scores, for some fixed k. We select these two families of randomized voting rules because they admit
straightforward procedural explanations. For instance, the aforementioned rules based on Borda
count can be explained as follows (using version (a) for the former and (b) for the latter using k = 3).
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Table 1: Distortion and minimum welfare of common randomized positional scoring rules.
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“Each user gives zero points to their least preferred option, one point to the next
best option, two points to the next best option, and so on. Points are tallied and...
(a) the chances of each option being selected are proportional to its total points.
(b) the three options with the highest total points are selected with an equal chance.”

Unlike prior work on distortion, which is often focused on identifying the most efficient rule, we
provide a refined analysis that characterizes the distortion of many interesting rules in these families,
allowing the system designer to pick the one most suited to the application at hand.

1.1 Our Results

Randomized positional scoring rules. We develop a whole swathe of novel techniques for analyzing
distortion, and use them to obtain tight distortion (dist) bounds for randomized versions of well-
known positional scoring rules such as plurality, Borda count, harmonic, veto, and k-approval,
presented in Table 1. Along the way, we also obtain tight bounds for another useful efficiency metric,
minimum welfare (min-sw), defined in Section 3.1. In the supplementary material, we apply our novel
techniques to analyze the distortion of randomized multi-level approval rules, which are uniform
mixtures of different randomized k-approval rules. We demonstrate the strength of this result by
using it to derive tight distortion bounds for a recently studied randomized positional scoring rule due
to Gkatzelis et al. [26].

Our distortion bound for the randomized plurality rule (better known as random dictatorship) may be
of independent interest because it is a widely studied voting rule [27–29]. It is also fascinating that
the distortion of randomized k-approval is highly non-monotone: first decreasing from Θ(m

√
m)

to Θ(m) when k grows from 1 to m1/3, then staying Θ(m) when k grows further to
√
m, then

increasing again to Θ(m
√
m) by k = m−Θ(m), and finally decreasing again to Θ(m) by k = m.

Random committee member rules. For the family of random committee member rules, we
design a novel voting rule, which selects a random member of a top-biased stable k-committee,
and achieves a distortion of O(max{k,m2/(k

√
k)}). We complement this with a lower bound of

Ω(max{k,m2/k2}) on the distortion of any rule in this class.

Experiments. Our experiments with synthetic data indicate that while the (worst-case) distortion of
various rules in both families is not significantly better than the optimal deterministic distortion of
Θ(m2) and often even worse than the Θ(m) distortion of the trivial rule selecting a uniformly random
alternative, rules from both families (almost always) significantly outperform deterministic voting
rules and randomized positional scoring rules (almost always) outperform the uniform-random rule as
well. This suggests that one should strongly consider replacing deterministic rules with explainable
randomized rules from these two families in order to achieve significantly improved efficiency.

1.2 Additional Related Work

Outcome explanations in voting. We focus on (randomized) voting rules with procedural ex-
planations because that is, in our view, the key advantage of voting over black-box AI solutions.
Nonetheless, there is also compelling literature on producing outcome explanations for voting rules.
Classical work that seeks voting rules satisfying qualitative axioms such as Condorcet consistency can
be viewed in this light. However, these axioms often provide a justification only in limited instances
with a special structure. Cailloux and Endriss [30] propose a method for producing a justification on
any given instance by starting from an axiomatic justification on a nearby special instance and using
a chain of explanations relating adjacent pairs of instances to arrive at the given instance. Peters et al.
[31] bound the length of such chains, focusing especially on positional scoring rules, while Boixel
and Endriss [32] and Boixel et al. [33] study computational aspects of finding them.
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On randomized positional scoring rules. The family of randomized positional scoring rules was
first proposed by Barbera [34], under the name of point-voting schemes. He establishes several
appealing properties of these rules, including strategyproofness (i.e., no agent can ever strictly benefit
from misreporting her preferences). Note that the outcome of a randomized positional scoring rule
can be computed by first selecting an agent uniformly at random, and then, for each k, selecting her
k-th most preferred alternative with probability proportional to score assigned to position k. In this
sense, implementing a randomized positional scoring rule requires little elicitation.

2 The Setting

Let us formally introduce our setting and define the notion of distortion. We will define each class of
explainable voting rules in the section in which we will study it. We use the terminology of elections
for consistency with the literature, but our setting captures a general decision-making scenario in
which one of several alternatives must be chosen by aggregating conflicting preferences or opinions.

Basic notation. Let [t] = {1, 2, . . . , t} for t ∈ N, and define ∆(S) to be the probability simplex over
the finite set S. For a vector s⃗ = (s1, . . . , st), denote its ℓ1-norm by ∥s⃗∥1 =

∑
i∈[t] si.

Utilitarian voting. A (single-winner) election consists of sets N = [n] of n agents and A = [m]
of m alternatives. Each agent i ∈ N has a personal cardinal utility function ui : A 7→ R⩾0, where
ui(a) is the value associated by agent i to alternative a. Following the convention in the literature
(e.g., see [22, 19]), we adopt the unit-sum normalization of utility functions: for every i ∈ N , let∑

a∈A ui(a) = 1. Aziz [35] provides several compelling justifications for using unit-sum utility
functions. For a utility profile u⃗ = (u1, . . . , un) and a subset of agents T ⊆ N , define the social
welfare of an alternative a ∈ A with respect to T as swT (a, u⃗) =

∑
i∈T ui(a). We write swN simply

as sw, and drop u⃗ when it is clear from the context. As an extension, for a distribution p ∈ ∆(A) over
the alternatives, define ui(p) = Ea∼p[ui(a)] and its social welfare as sw(p, u⃗) =

∑
i∈N ui(p). Our

goal is to find a distribution over alternatives with high social welfare. We will sometimes construct
and analyze a partial utility profile, where the utilities of each agent sum to at most 1.

Ordinal preferences and voting rules. We consider voting rules that have access only to the ordinal
preferences induced by the utilities. This is because a ranking of alternatives can often be elicited with
less cognitive burden or estimated more accurately than exact numerical utilities for each alternative.

Each agent i ∈ N submits a preference ranking σi : [m] 7→ A of the alternatives. We use ranki(a) =
σ−1
i (a) to denote the rank of alternative a in agent i’s preference ranking (the most preferred

alternative has rank 1), and a ≻i a
′ to denote that agent i prefers a to a′ (i.e., ranki(a) < ranki(a

′)).
We assume that σi is consistent with agent i’s utility function ui, i.e., a ≻i a

′ implies ui(a) ⩾ ui(a
′)

for all a, a′ ∈ A; ties can be broken arbitrarily without affecting our distortion upper bounds.

Let σ⃗ = (σi)i∈N be a preference profile and C(σ⃗) denote the set of utility profiles u⃗ such that σi is
consistent with ui for each agent i ∈ N . A voting rule f takes a preference profile σ⃗ as input and
returns a distribution p over alternatives.

Distortion. The distortion of a distribution p ∈ ∆(A) over alternatives with respect to a utility profile
u⃗ is defined as

dist(p, u⃗) =
maxa∈A sw(a, u⃗)

sw(p, u⃗)
.

The distortion of a voting rule f is defined as its worst-case distortion over all instances: distm(f) =
supσ⃗,u⃗∈C(σ⃗) dist(f(σ⃗), u⃗), where the supremum is taken over all instances with m alternatives and
any number of agents. For simplicity, we drop m and write dist(f).

3 Distortion of Randomized Positional Scoring Rules

The first class of explainable randomized voting rules we study is randomized positional scoring rules,
or point-voting schemes [34]. This builds on the popular class of (deterministic) positional scoring
rules, which assign scores to alternatives based on their positions in agents’ preference rankings,
and adds an easy-to-explain randomization step where each alternative is chosen with probability
proportional to its score instead of deterministically choosing the one with the highest score.
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Positional scoring rules. A scoring vector s⃗ = (s1, . . . , sm) assigns a score sr to each position
r ∈ [m] and satisfies s1 ⩾ s2 ⩾ . . . ⩾ sm ⩾ 0. For an alternative a ∈ A, let scorei(c, s⃗) = sranki(a)
be the score a obtains from agent i, and for N ′ ⊆ N , scoreN ′(a, s⃗) =

∑
i∈N ′ scorei(a, s⃗). Note that∑

a∈A scoreN (a, s⃗) = n · ∥s⃗∥1. We drop s⃗ when it is clear from the context. For a scoring vector s⃗,
we can define the following rules.

- The deterministic positional scoring rule fdet
s⃗ selects the top scored alternative (breaking

ties arbitrarily), i.e., fdet
s⃗ (σ⃗) = argmaxa∈A scoreN (a, s⃗).

- The randomized positional scoring rule f rand
s⃗ selects every alternative a ∈ A with probability

proportional to its score, i.e., Pr[f rand
s⃗ (σ⃗) = a] = scoreN (a, s⃗) / (n · ∥s⃗∥1).

The deterministic rules introduced above include several well-known voting rules such as plurality,
Borda, k-approval, veto, and harmonic defined, by the following scoring vectors, respectively:

s⃗plu = (1, 0, . . . , 0), s⃗Borda = (m− 1,m− 2, . . . , 0), s⃗k-approval = (1, . . . , 1︸ ︷︷ ︸
k ones

, 0, . . . , 0),

s⃗veto = (1, 1, . . . , 1, 0), s⃗harmonic = (1, 1/2, 1/3, . . . , 1/m).

We refer to the randomized versions of these rules as “randomized f”, where f ∈
{plurality, Borda, harmonic, veto}, and extend this terminology to any positional scoring rule fs⃗.
Note that “randomized plurality” is more widely known as random dictatorship (see, e.g., [27, 28]).

3.1 High-Level Distortion Analysis and Novel Insights

Logarithmic rounding of the scores. Our first useful insight is that we can reduce the number of
distinct scores by rounding any score down to the nearest power of 1 + α,for a constant ϵ > 0, and
this only changes the distortion of the rule by a factor of at most 1 + α.

Lemma 1 (Rounding Down Scores). Let α ⩾ 0, and s⃗, s⃗′ be scoring vectors such that s′j ⩽ sj ⩽
(1+α)s′j for all j ∈ [m]. Then, for every preference profile σ⃗ and consistent utility profile u⃗ ∈ C(σ⃗),

1

1 + α
· sw(f rand

s⃗ ′ (σ⃗), u⃗) ⩽ sw(f rand
s⃗ (σ⃗), u⃗) ⩽ (1 + α) · sw(f rand

s⃗ ′ (σ⃗), u⃗),

and consequently, 1
1+α · dist(f

rand
s⃗′

) ⩽ dist(f rand
s⃗ ) ⩽ (1 + α) · dist(f rand

s⃗′
).

By applying this transformation, scores in the range [∥s⃗∥1/(4m2), ∥s⃗∥1] can be reduced to O(logm)
distinct values, which we will find helpful in the subsequent sections. In the supplementary material,
we show that by ignoring the remaining scores by reducing any sj ⩽ ∥s⃗∥1/(4m2) to 0 changes the
distortion further by another factor of at most two. Hence, we can limit our focus to scoring vectors
that contain O(logm) distinct scores, resulting in only a constant factor loss in the distortion analysis.

High-level distortion analysis. After reducing the scoring vector to O(logm) distinct scores, we
partition the agents into O(logm) groups based on where they rank the optimal alternative a∗. This
is only for the analysis; the voting rule does not know the optimal alternative. More formally, let
0 = ℓ0 < ℓ1 < . . . < ℓq = m be the indices where the score changes in the reduced scoring vector,
where, for each r ∈ [q], we have si = sℓr for all i ∈ [ℓr−1+1, ℓr], and sℓ1 > . . . > sℓq . Furthermore,
let Nr be the set of agents who rank a∗ among positions [ℓr−1 + 1, ℓr].

Next, borrowing an insight from the prior distortion literature [36–38], we round the agent utilities to
the nearest power of two and ignore utilities below 1/m2, reducing the number of distinct utility values
to O(logm) while losing at most a constant factor in the analysis. This allows us to we subdivide
voters in each group Nr into O(logm) subgroups such that every agent in a subgroup with the same
utility, say τ , for a∗. We then employ three strategies to bound the distortion within each subgroup.
Finally, we show that the overall distortion can be upper bounded, up to logarithmic factors, by the
worst of these O(log2 m) distortion bounds across all subgroups of all the Nr groups.

Strategy 1 (Welfare above a∗). Voters in a subgroup of Nr who have utility τ for a∗ also have
utility at least τ for their top ℓr−1 alternatives. This helps us derive social welfare guarantees for the
randomized positional scoring rule.

Strategy 2 (Probability of a∗). We use the well-known observation (see, e.g., [22]) that the distortion
is always upper bounded by the inverse of the probability of selecting a∗.

Strategy 3 (Absolute Welfare Lower Bounds). Another novel insight from our work is that proving
an absolute lower bound on the welfare achieved by a rule across all instances can be useful in
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bounding the distortion, even though the latter needs to compare the welfare achieved in each instance
to the optimum welfare in that instance. We carefully analyze and approximate, up to logarithmic
factors, the minimum welfare achieved by the randomized positional scoring rules we study, and use
it to bound its distortion. A similar idea has been used in other domains (see, e.g. [39]), but to the
best of our knowledge, we are the first to successfully apply it to distortion analysis.
Definition 1 (Minimum Welfare). Define the minimum welfare of a distribution over alternatives
p ∈ ∆(A) on a preference profile σ⃗ as min-sw(p, σ⃗) = inf u⃗∈C(σ⃗) sw(p, u⃗), which is the minimum
social welfare of p across all consistent utility profiles. The minimum welfare of a voting rule
f is the minimum welfare of its output, minimized over all preference profiles: min-swn,m(f) =
minσ⃗ min-sw(f(σ⃗), σ⃗), where the minimum is taken over all preference profiles with n agents and m
alternatives. We drop n and m when clear from the context.

Due to C(σ⃗) being compact, the infimum in the min-sw(p, σ⃗) definition is indeed attained. In
the supplementary material, we make an structural observation that for any preference profile and
distribution p ∈ ∆(A), the minimum welfare is at most n/m, attained at a dichotomous utility profile.
Furthermore, every randomized positional scoring rule f rand

s⃗ satisfies min-sw(f rand
s⃗ ) ∈ [n/(4m2), n/m].

We also show how to approximate minimum welfare better (up to constants or logarithmic terms);
see Table 1 for tight bounds for the rules induced by common scoring vectors.

To this end, we present our most intricate technical lemma to derive a generic welfare lower bound,
which we use to apply Strategies 1 and 3. Instead of focusing only on Pr[f rand

s⃗ (σ⃗) = a∗], it bounds the
overall welfare expression

∑
a∈A Pr[f rand

s⃗ (σ⃗) = a] · swT (a); the product of probability of selection
and welfare of an alternative leads to a quadratic program, where the variables encode the worst case,
and this is analytically solved using the Karush-Kuhn-Tucker (KKT) conditions.
Lemma 2. Fix any scoring vector s⃗, preference profile σ⃗, subset of agents T ⊆ N , threshold τ ⩾ 0,
and rank ℓ ∈ [m]. For a partial utility profile u⃗ in which every agent in T has utility at least τ for
each of her top ℓ alternatives and all other utilities are 0, we have:

swT (f
rand
s⃗ (σ⃗), u⃗) ⩾ τ · |T |ℓ

2n∥s⃗∥1
min
h∈[m]

1

h

(
2sℓ · |T |ℓ+ (n− |T |) ·

h∑
j=1

sm−j+1

)
.

Instead of tediously explaining the lemma, we will later show how its straightforward application
wondrously gives us the desired welfare lower bound for the example of randomized Borda rule.

3.2 Analyzing Common Rules

We are ready to present our main result, which uses the aforementioned insights to pinpoint the
asymptotic distortion of common randomized positional scoring rules.
Theorem 2. For f ∈ {plurality, Borda, harmonic, veto, k-approvals}, the minimum welfare
(min-sw) and the distortion (dist) of the ‘randomized f ’ rule are as shown in Table 1.

Due to space limitations, we only provide a proof for the distortion upper bound of the randomized
Borda rule, and defer the rest to the supplementary material. For conciseness, we use the notation
Borda(a) ≜ score(a, s⃗Borda). First, we need the following lower bound on its minimum welfare.
Lemma 3. The minimum welfare of the randomized Borda rule is min-sw(f rand

s⃗Borda
) = Ω( n

m
√
m
).

Proof. Fix any preference profile σ⃗ and consistent utility profile u⃗ ∈ C(σ⃗). Our goal is to show
that sw(f rand

s⃗Borda
(σ⃗), u⃗) = Ω( n

m
√
m
). First, we make a few modifications to the scoring vector and the

preference profile that are guaranteed to not increase the welfare, and then invoke Lemma 2.

Simplify the scores. Let us consider the scoring vector s⃗ ′ which is equal to s⃗Borda except the top
m/2 scores are all equal to m/2. Note that s′j ⩽ (sBorda)j ⩽ 2s′j for all j ∈ [m]. Hence, invoking
Lemma 1 with α = 1 yields sw(f rand

s⃗Borda
(σ⃗), u⃗) ⩾ 1/2 · sw(f rand

s⃗ ′ (σ⃗), u⃗).

Simplify the preference and utility profiles. Next, let us lower bound sw(f rand
s⃗ ′ (σ⃗), u⃗). For each agent

i, let Ai be the set of top m/2 alternatives in σi and ai ∈ argmina∈Ai
score(a, s⃗ ′) be the alternative

in Ai with the lowest score (equivalently, probability of selection under f rand
s⃗ ′ (σ⃗)). Now,

ui(f
rand
s⃗ ′ (σ⃗)) ⩾

∑
a∈Ai

score(a, s⃗ ′)

n∥s⃗ ′∥1
· ui(a)

(1)

⩾
score(ai, s⃗

′)

n∥s⃗ ′∥1
·

(∑
a∈Ai

ui(a)

)
(2)

⩾
score(ai, s⃗

′)

n∥s⃗ ′∥1
· 1
2
,
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where (1) follows from the definition of ai and (2) uses the fact that each agent has a total utility of at
least 1/2 for her top m/2 alternatives (due to the pigeonhole principle).

Invoking Lemma 2. The final expression above can be written as u′
i(f

rand
s⃗ ′ (σ⃗′)), where σ⃗′ is a

preference profile in which each agent i ranks ai first, and u⃗′ is a partial utility profile in which
each agent i has utility 1/2 for her top alternative and 0 for the rest. Summing the above for all
agents, we have sw(f rand

s⃗ ′ (σ⃗), u⃗) ⩾ sw(f rand
s⃗ ′ (σ⃗′, u⃗′)). Thus, to lower bound it, we invoke Lemma 2

with s⃗ ← s⃗ ′, σ⃗ ← σ⃗′, T being an arbitrary subset of n/2 agents, τ ← 1/2, and ℓ ← 1. Using
∥s⃗ ′∥1 = m

2 ·
m
2 +

(
m/2
2

)
= m(3m−2)

8 , this gives us

sw(f rand
s⃗ ′ (σ⃗′), u⃗′)

(1)

⩾
1

2
·

n
2 · 1

2n · m(3m−2)
8

· min
h∈[m/2]

1

h

(
2 · m

2
· n
2
+

n

2
· h(h− 1)

2

)
=

n

4m(3m− 2)
· min
h∈[m/2]

(
2m

h
+ h− 1

)
(2)

⩾
n · (2

√
2m− 1)

4m(3m− 2)

(3)

⩾
n

6m
√
m
,

where the restriction to h ∈ [m/2] in (1) is based on the fact that the bound would be Ω(n/m) when
h > m/2, (2) is due to the AM-GM inequality, and (3) uses m ⩾ 2. Connecting the dots, we have

sw(f rand
s⃗Borda

(σ⃗), u⃗) ⩾
1

2
· sw(f rand

s⃗ ′ (σ⃗), u⃗) ⩾
1

2
· sw(f rand

s⃗ ′ (σ⃗′), u⃗′) ⩾
n

12m
√
m
.

To translate the welfare lower bound from Lemma 3 into a distortion upper bound, we need the
following relation between the Borda score of an alternative and its social welfare.
Lemma 4. For any preference profile σ⃗, consistent utility profile u⃗ ∈ C(σ⃗), and alternative a ∈ A,
we have sw(a) ⩽ (Borda(a) + n)/m.

The desired distortion upper bound can now be derived using a standard analysis. The crux of
our proof for the randomized Borda rule lies in our intricate derivation of its minimum welfare in
Lemma 3, for which Lemma 2 does the heavy lifting.

Lemma 5. The distortion of the randomized Borda rule is O(m5/4).

Proof sketch. Fix a pair of preference profile σ⃗ and u⃗ ∈ C(σ⃗). Let a∗ ∈ argmaxa∈A sw(a, u⃗) be an
optimal alternative. By Strategy 2, we know the distortion is at most n∥s⃗Borda∥1

Borda(a∗) . Following Strategy 3
and by Lemma 3, we have that distortion is at most sw(a∗)

n/(12m
√
m)

, which, using Lemma 4, is at most
12
√
m ·

(
Borda(a∗)/n + 1

)
. Putting everything together, we show that the distortion is O(m5/4).

4 Random Committee Member Rules

Next, we focus on our second class of explainable randomized voting rules that select an alternative
uniformly at random from a shortlisted committee of size k ∈ [m]. We call them random k-committee
member rules. For k = 1, we are left with deterministic rules, among which plurality achieves the
optimal distortion of Θ(m2). For k = m, we are left with uniform selection among all alternatives,
which has distortion Θ(m). Is it possible that, for some intermediate value of k, we in fact achieve
sublinear distortion? Could we achieve distortion at most logarithmic factors worse than the optimal
Θ(
√
m), like with randomized positional scoring rules? We answer the former positively but the

latter negatively. First, we present a lower bound proving that any random k-committee member rule,
for any value of k, incurs a distortion of at least Ω(m2/3).
Theorem 3. For k ∈ [m], the random k-committee member rule incurs Ω(max(k,m2/k2)) distor-
tion. This lower bound is at least Ω(m2/3) for all k.

As a result, this class of rules is less powerful than the class of randomized positional scoring rules,
and thus, the class of all randomized rules. However, especially for small values of k, we gain the
benefit of randomizing over a small support, which could translate to greater explainability.

To derive upper bounds, one might be tempted to turn again to positional scoring rules, and consider
selecting uniformly at random from the k alternatives with the highest score according to some
scoring vector. In the supplementary material, we show that using plurality scoring vector yields
Θ(m(m− k + 1)) distortion. While it nicely interpolates between the extremes of Θ(m2) at k = 1
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Figure 1: All figures show results averaged over 150 runs along with the standard
error. Figures 1a to 1c share the legend on the left.

and Θ(m) at k = m, it fails to achieve sublinear distortion, which we prove to be achievable. What
about other scoring vectors? Unfortunately, it is relatively easy to see that using scoring vectors such
as Borda, harmonic, or veto results in unbounded distortion. Despite the disappointing worst-case
performance, we show in Section 5 that these rules perform relatively well empirically.

Next, we design a novel random k-committee member rule, which, with the right value of k, allows
us to achieve sublinear distortion.

Theorem 4. There is a polynomial-time computable random k-committee member rule with distortion
O(max{k,m2/(k

√
k)}). This is minimized at k = m4/5, where the bound becomes O(m4/5).

To achieve the above, we concoct a three-way mixture of an approximately stable committee [40],
a powerful notion which has been used to derive optimal randomized rules [19], alternatives with
high plurality scores, and alternatives picked carefully to guarantee high minimum welfare from
sufficiently many agents. We refer to the committee thus formed as a top-biased stable k-committee.
The rule that returns this committee is presented as Algorithm 1 in the supplementary material.

Theorems 3 and 4 leave open the question of the optimal distortion that can be achieved by a random
committee member rule, sandwiching this value between O(m4/5) and Ω(m2/3). It is also interesting
to wonder which value of k is optimal. Our upper bound is optimized at k = m4/5, and our lower
bound implies that the optimal k must be in [m3/5,m4/5] as the distortion outside of that range is
Ω(m4/5). See Section 5 for an empirical evaluation of the optimal k.

5 Experiments

Next, we empirically evaluate the efficiency of explainable rules studied in the previous sections.

Rules. We consider three classes of rules: deterministic positional scoring rules, randomized
positional scoring rules from Section 3, and, from Section 4, rules that select uniformly at random from
the k alternatives with the highest scores (henceforth, uniform random k-positional scoring rules).
We consider four representative scoring vectors f ∈ {Plurality,Borda,Harmonic, 3-Approval}, and
denote the corresponding rules in the three classes by ‘D f ’, ‘R f ’, and ‘URkf ’, respectively. Thus,
overall, we test 12 voting rules. As benchmarks, we also add the Uniform rule, which selects an
alternative uniformly at random from the set of all alternatives, and the Instance Optimal rule, which
selects the lottery over alternatives minimizing distortion on the preference profile. Boutilier et al.
[22] show how to use linear programming to compute the latter in polynomial time.

Data Generation. We generate preference profiles by sampling n rankings over m alternatives iid
from the Mallows model [41], which is widely used in machine learning and statistics. The model
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takes as input an underlying reference ranking σ∗ (which can be set arbitrarily) and a dispersion
parameter ϕ ∈ [0, 1]. When ϕ = 1, the model converges to a uniform distribution over all m!
rankings (also known as impartial culture), whereas ϕ→ 0 converges to the point distribution where
σ∗ is sampled with probability 1, so all the agents have the same preference ranking in the sampled
profile. For a precise definition of the model and an efficient algorithm to sample from it (which we
use in our experiments), see the work of Lu and Boutilier [42]. For each combination of n = 100
agents, m ∈ {5, 10, . . . , 50} alternatives, and dispersion parameter ϕ ∈ {0, 0.1, . . . , 1}, we sample
150 instances, and report averages along with the standard error.

Evaluation. For each rule f under consideration and each instance σ⃗, we evaluate the efficiency of
the output f(σ⃗) by measuring its instance-specific distortion dist(f(σ⃗), σ⃗). Note that this still takes a
worst case over the utility profiles consistent with σ⃗, but unlike in Sections 3 and 4 where we also
take a worst case over σ⃗, here we compute the expected distortion over σ⃗ drawn from the Mallows
model. Again, we compute dist(f(σ⃗), σ⃗) using the LP-based approach of Boutilier et al. [22].

Results. Figures 1a to 1c show the average distortion of different rules for ϕ ∈ {0.1, 0.5, 1},
respectively, fixing m = 25. For large ϕ (impartial culture), randomized positional scoring rules
outperform deterministic and random committee member rules as well as the uniform benchmark.
In this case, it is more efficient to give a chance of winning to each alternative. As ϕ decreases
to 0.5 and agent rankings become somewhat correlated, random committee member rules start
to outperform some of the randomized positional scoring rules (though randomized plurality and
randomized 3-approval still perform quite well). But crucially, both families of rules still outperform
deterministic rules and the improved performance of random committee member rules now allows
them to outperform the uniform benchmark as well. At ϕ = 0.1, when agent preferences are highly
correlated, deterministic rules gain some traction. Nonetheless, at least one rule from one of the two
randomized classes still outperforms all deterministic rules (randomized plurality for low m and any
random committee member rule for high m). Overall, the evidence suggests that one can almost
always choose an explainable randomized rule that achieves better efficiency than deterministic rules,
though the choice of the rule may have to depend on the setting at hand. A detailed comparison of
rules in each class can be found in the supplementary material.

In the above experiments, for random committee member rules (specifically, the uniform random
k-positional scoring rules), we use a committee size of k = 3. Figure 1d shows the best value of k
(one that yields the minimum distortion) for different scoring vectors as a function of ϕ. It turns out
that the best k is indeed very small (⩽ 5) unless ϕ is really close to 1. Thus, k = 3 is a reasonable
choice that helps our random committee member rules achieve high efficiency. Still, it is possible to
further optimize the efficiency of these rules by pairing them with their corresponding optimal value
of k; the resulting average distortion is presented in the supplementary material.

6 Limitations and Future Work

Explainability. We focus on the families of randomized positional scoring rules and random
committee member rules as two examples of explainable randomized voting rules. While we argue
in the introduction that these families admit intuitive procedural explanations and provide example
explanations, checking whether stakeholders find these explanations reasonable and satisfactory in
the context of a real-life application requires an in-depth investigation, possibly via user studies.
Our work also treats explainability as a qualitative attribute, but different rules — even within the
same family — may differ in the degree to which they are explainable. Quantifying the degree of
explainability, both theoretically and empirically, remains to be tackled.

Efficiency. Our work uses distortion as a yardstick for efficiency, leaving open exciting technical
questions. While our analysis of randomized multi-level approval rules in the supplementary material
takes a step towards characterizing the distortion of all randomized positional scoring rules, it still
remains an unresolved challenge. For random committee member rules, even the more basic question
of identifying the optimal distortion they can achieve remains open, though we are able to pinpoint it
to be between Ω(m2/3) and O(m4/5). Taking a step back, while distortion is a reasonable theoretical
measure for efficiency, it remains to be seen whether it is also correlated for other measures of
efficiency one may care about in practice. For example, in the context of food donations, Lee et al.
[15], who use the deterministic Borda rule to make decisions, suggest a number of important decision
factors other than the social welfare of the stakeholders, such as whether the donations are distributed
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equitably, how long the drivers have to travel to deliver donations, and whether organizations with
higher poverty rates, lower median incomes, and worse food access are receiving sufficient donations.
An important next step would be to measure the efficiency of explainable randomized voting rules in
real-life applications such as food donation.
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Appendix

In this supplementary material, we provide the details and proofs omitted from the main text. The
structure of the supplementary material resembles the structure of the main text.

In Appendix A, we present the results on randomized positional scoring rules. Specifically, we first
present novel insights (A.1), use them to prove distortion upper bounds for common randomized
positional scoring rules (A.2), prove generic lower bounds that prove tightness of these results (A.3),
and finally extend our results to randomized multi-level approval rules (A.4) as the first step towards
characterizing the distortion of every randomized positional scoring rule.

In Appendix B, we present the results on random k-committee member rules, first presenting a lower
bound (B.1) and then an algorithm achieving a non-trivial upper bound (B.2).

Finally, in Appendix C, we present additional experiments, such as analyzing how the distortion of
explainable randomized rules depends on the Mallows noise parameter ϕ for fixed values of m (as
opposed to the results in the main text, which analyze the dependence on m for fixed values of ϕ), and
analyzing how the optimal k (and the distortion achieved at this optimal k for random k-committee
member rules changes with m.

A Randomized Positional Scoring Rules

In this section, we expand on our discussion of randomized positional scoring rules.

A.1 High-Level Distortion Analysis and Novel Insights

Next, we elaborate on the high-level distortion analysis and novel insights presented in Section 3.1 as
well as provide additional novel insights.

A.1.1 Absolute Welfare is Minimized at Dichotomous Utilities

As mentioned in Strategy 3 of Section 3.1, a novel insight of our work is that proving an absolute
lower bound on the welfare achieved by a rule across all instances can be useful in bounding the
distortion, even though the latter needs to compare the welfare achieved in each instance to the
optimum welfare in that instance. First, recall the definition of minimum welfare.
Definition 1 (Minimum Welfare). Define the minimum welfare of a distribution over alternatives
p ∈ ∆(A) on a preference profile σ⃗ as min-sw(p, σ⃗) = inf u⃗∈C(σ⃗) sw(p, u⃗), which is the minimum
social welfare of p across all consistent utility profiles. The minimum welfare of a voting rule
f is the minimum welfare of its output, minimized over all preference profiles: min-swn,m(f) =
minσ⃗ min-sw(f(σ⃗), σ⃗), where the minimum is taken over all preference profiles with n agents and m
alternatives. We drop n and m when clear from the context.

First, we show that this minimum welfare is in fact attained at a dichotomous utility profile.
Definition 5 (Dichotomous Utilities). For k ∈ [m], define the k-dichotomous utility function for
agent i to be

1i,k =

{
1/k ranki(a) ⩽ k,

0 o.w..
That is, agent i is indifferent between her top k alternatives, but does not value any other alternative.
We call u⃗ a dichotomous utility profile if, for each i ∈ N , we have ui = 1i,k for some k ∈ [m].
Lemma 6. For any preference profile σ⃗ and distribution over alternatives p ∈ ∆(A), there exists a
dichotomous utility profile u⃗∗ ∈ argminu⃗∈C(σ⃗) sw(p, u⃗) at which minimum welfare is achieved, and
this minimum welfare is bounded as min-sw(p, σ⃗) = sw(p, u⃗∗) ⩽ n/m.

Proof. Let p = f(σ⃗) be the distribution returned by the rule f . Take the utility profile u⃗ =
argminu⃗∈C(σ⃗) sw(p, u⃗). Suppose by contradiction that there exists an agent i ∈ N such that ui is
not dichotomous. Since ui is a unit-sum utility vector, ui can be represented as ui =

∑
k∈[m] αk1i,k

for a unique list of αk’s subject to
∑

k αk = 1. Then, we have

ui(p) =
∑

k∈[m]
αk · 1i,k(p).
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By the linearity of the expression above, we can assume, without loss of generality, that it is minimized
at one of the 1i,k’s.

To show that min-sw(p, σ⃗) ⩽ n
m , take the utility profile ui = 1i,m for all i (all agents are indifferent).

Then, ui(p) =
∑

a∈A
pa

m = 1
m and sw(p) = n

m .

Next, we show that the minimum welfare of any distribution that is returned by a randomized
positional scoring rule on any preference profile is not much lower.
Lemma 7. For any randomized positional scoring rule f rand

s⃗ and preference profile σ⃗, the minimum
welfare is bounded as min-sw(f rand

s⃗ (σ⃗), σ⃗) ⩾ n/(4m2).

Proof. Normalize s⃗ such that ∥s⃗∥1 = 1. Following Lemma 11, for all k ∈ [m], min-sw(f rand
s⃗k-approval

) ⩾
n

4m2 . Furthermore, any scoring vector can be uniquely rewritten as s⃗ =
∑

k∈[m] αk · s⃗k-approval
k with

αk ⩾ 0 and
∑

k∈[m] αk = 1. Note that scaling a scoring vector does not affect its distortion or
obtained social welfare. Therefore,

min-sw(f rand
s⃗ ) ⩾

∑
k∈[m]

αk ·min-sw(f rand
s⃗k-approval

) ⩾
n

4m2
·
∑
k∈[m]

αk =
n

4m2
.

From Lemmas 6 and 7, we have the following.
Corollary 6. Every randomized positional scoring rule f rand

s⃗ satisfies min-sw(f rand
s⃗ ) ∈

[n/(4m2), n/m].

See Table 1 for tight bounds for the rules induced by common scoring vectors.

A.1.2 Logarithmic Rounding of the Scores

Let us begin by providing a proof of the following result stated in Section 3.1.

Lemma 1 (Rounding Down Scores). Let α ⩾ 0, and s⃗, s⃗′ be scoring vectors such that s′j ⩽ sj ⩽
(1+α)s′j for all j ∈ [m]. Then, for every preference profile σ⃗ and consistent utility profile u⃗ ∈ C(σ⃗),

1

1 + α
· sw(f rand

s⃗ ′ (σ⃗), u⃗) ⩽ sw(f rand
s⃗ (σ⃗), u⃗) ⩽ (1 + α) · sw(f rand

s⃗ ′ (σ⃗), u⃗),

and consequently, 1
1+α · dist(f

rand
s⃗′

) ⩽ dist(f rand
s⃗ ) ⩽ (1 + α) · dist(f rand

s⃗′
).

Proof. Fix a preference profile σ⃗ and a consistent utility profile u⃗ ∈ C(σ⃗). Since s′j ⩽ sj ⩽ (1+α)s′j
for all j ∈ [m], we have score(a, s⃗) ⩾ score(a, s⃗ ′) for all alternatives a ∈ A as well as ∥s⃗∥1 ⩽
(1 + α) · ∥s⃗ ′∥1. Hence,

sw(f rand
s⃗ (σ⃗), u⃗) =

∑
a∈A

sw(a, u⃗) · score(a, s⃗)
n∥s⃗∥1

⩾
∑
a∈A

sw(a, u⃗) · score(a, s⃗ ′)

n(1 + α)∥s⃗ ′∥1

=
1

1 + α
· sw(f rand

s⃗ ′ (σ⃗), u⃗).

Hence,
dist(f rand

s⃗ (σ⃗), u⃗) ⩽ (1 + α) · dist(f rand
s⃗ ′ (σ⃗), u⃗).

Since the above holds for all σ⃗ and u⃗ ∈ C(σ⃗), we have dist(f rand
s⃗ ) ⩽ (1 + α) · dist(f rand

s⃗ ′ ).

The other direction follows similarly using score(a, s⃗) ⩽ (1+α)·score(a, s⃗ ′) and ∥s⃗∥1 ⩾ ∥s⃗ ′∥1.

As stated in Section 3.1, applying this transformation to scores in the range [∥s⃗∥1/(4m2), ∥s⃗∥1] allows
us to reduce them to O(logm) distinct values. The next result shows that the remaining small scores
can be ignored by reducing them to 0 while only changing the distortion by another factor of at most
two.
Lemma 8 (Ignoring Small Scores). Let s⃗ be a scoring vector. Let s⃗′ be s⃗ except that sj ⩽

∥s⃗∥1

4m2 ⇒
s′j = 0 for all j ∈ [m]. Then,

1

2
· dist(f rand

s⃗′
) ⩽ dist(f rand

s⃗ ) ⩽ 2 · dist(f rand
s⃗′

).
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Proof. Fix any preference profile σ⃗ and consistent utility profile u⃗ ∈ C(σ⃗). For each a ∈ A, define
δ(a) = score(a, s⃗)− score(a, s⃗ ′). Then,

sw(f rand
s⃗ (σ⃗), u⃗) =

∑
a∈A

sw(a, u⃗) ·
(
score(a, s⃗ ′) + δ(a)

n∥s⃗∥1

)
=
∥s⃗ ′∥1
∥s⃗∥1

· sw(f rand
s⃗ ′ (σ⃗), u⃗) +

∑
a∈A

sw(a, u⃗) · δ(a)

n∥s⃗∥1
. (1)

Note that ∥s⃗ ′∥1 ⩾ ∥s⃗∥1 − (m− 1) · ∥s⃗∥1

4m2 ⩾ (1− 1
4m+1 ) · ∥s⃗∥1. Thus, in Equation (1), we have

sw(f rand
s⃗ (σ⃗), u⃗) ⩾

(
1− 1

4m+ 1

)
· sw(f rand

s⃗ ′ (σ⃗), u⃗).

This implies

dist(f rand
s⃗ (σ⃗), u⃗) ⩽

4m+ 1

4m
· dist(f rand

s⃗ ′ (σ⃗), u⃗).

Since this holds for all σ⃗ and u⃗ ∈ C(σ⃗), we have dist(f rand
s⃗ ) ⩽ (1 + 1

4m ) · dist(f rand
s⃗ ′ ).

For the other direction, we use the facts that ∥s⃗ ′∥1 ⩽ ∥s⃗∥1 and δ(a)
n∥s⃗∥1

⩽ 1
n∥s⃗∥1

· n · ∥s⃗∥1

4m2 = 1
4m2 .

Thus, in Equation (1), we have

sw(f rand
s⃗ (σ⃗), u⃗) ⩽ sw(f rand

s⃗ ′ (σ⃗), u⃗)+
∑
a∈A

sw(a, u⃗) · 1

4m2
= sw(f rand

s⃗ ′ (σ⃗), u⃗)+
n

4m2
⩽ 2 ·sw(f rand

s⃗ ′ ),

where the last inequality is due to Lemma 7. Using the same argument as above, this results in
dist(f rand

s⃗ ′ ) ⩽ 2 · dist(f rand
s⃗ ).

Using Lemma 1 with α = 1 and combining with Lemma 8, we get the following.
Corollary 7 (Scoring Vector Reduction). Given any scoring vector s⃗, there exists a scoring vector s⃗ ′

with O(logm) distinct positive scores such that (1/4) · dist(f rand
s⃗ ) ⩽ dist(f rand

s⃗ ′ ) ⩽ 4 · dist(f rand
s⃗ ).

A.1.3 Helpful Technical Lemmas

Before proving Lemma 2, we show a weaker lemma which follows from a simpler proof. This
is useful in particular for analyzing randomized k-approval rules with k ∈ [1,m − Ω(m)] (which
includes the randomized dictatorship rule) and randomized approval mixtures rules where again we
mix some k-approvals with k ∈ [1,m− Ω(m)].
Lemma 9. Fix any preference profile σ⃗, subset of agents T ⊂ N , threshold τ ⩾ 0, and rank ℓ ∈ [m].
For a partial utility profile u⃗ in which every agent in T has utility at least τ for each of her top ℓ
alternatives and all other utilities are 0, we have

sw(f rand
s⃗k-approval

) ⩾ τ · |T |
2

nm
· (min{k, ℓ})2

k
.

Proof. Let t = min{k, ℓ}. For all a ∈ A let xa denote the number of appearances of a among the
top t votes of T . Then,

sw(f rand
s⃗k-approval

) =
∑
a∈A

Pr[a] · sw(a)

⩾
∑
a∈A

xa

nk
· (xa · τ)

=
τ

nk
·
∑
a∈A

x2
a

⩾
τ

nk
·
(∑

a∈A xa

)2
m

(by AM-QM inequality)

=
τ

nk
· (|T | · t)

2

m
= τ · |T |

2

nm
· (min{k, ℓ})2

k
.
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The key limitation of the lemma above is that the probability of selecting alternative Pr[a] is lower
bounded by xa

nk (the score a gets only from the top ℓ alternatives of T ), while this could be higher
due to the score that agents in N \ T give to a. As a result, in the transition that uses the AM-QM
inequality, we divide the top ℓ alternatives of T among all m alternatives. If the scores obtained from
N \ T is also considered, it may be the case that the top ℓ alternatives of T is divided among fewer
number of alternatives (sublinear in m), which enables stronger lower bounds. To this end, we need a
more complicated analysis provided in the following lemma.
Lemma 2. Fix any scoring vector s⃗, preference profile σ⃗, subset of agents T ⊆ N , threshold τ ⩾ 0,
and rank ℓ ∈ [m]. For a partial utility profile u⃗ in which every agent in T has utility at least τ for
each of her top ℓ alternatives and all other utilities are 0, we have:

swT (f
rand
s⃗ (σ⃗), u⃗) ⩾ τ · |T |ℓ

2n∥s⃗∥1
min
h∈[m]

1

h

(
2sℓ · |T |ℓ+ (n− |T |) ·

h∑
j=1

sm−j+1

)
.

Proof. For all alternative a, denote by xa the number of appearances of a among the top ℓ votes of T .
Note that

∑
a∈A xa = |T | · ℓ. We have

swT (f
rand
s⃗ ) =

∑
a∈A

swT (a) ·
score(a)

n∥s⃗∥1

⩾
∑
a∈A

τ · xa ·
scoreT (a) + scoreN\T (a)

n∥s⃗∥1

⩾
∑
a∈A

τ · xa ·
xa · sℓ + scoreN\T (a)

n∥s⃗∥1
. (2)

Rename the candidates such that x1 ⩾ x2 ⩾ · · · ⩾ xm.

Worst-case Preference Ranking of N \ T . The contribution of N \ T to Equation (2) is
∑

a xa ·
scoreN\T (a) which can be decomposed to across agents, i.e. the contribution of each agent i ∈ N \T
is
∑

a∈A xa · scorei(a). Since xa’s are only depends on agents in T , to obtain a lower bound, we
may assume without loss of generality that their preference ranking is m ≻i m − 1 ≻i . . . ≻i 1,
since xm ⩽ xm−1 ⩽ . . . ⩽ x1 and scorei(σi(1)) ⩾ . . . ⩾ scorei(σi(m)).

Forming a Quadratic Program. Recall that we renamed the alternatives in decreasing order by xa.
Following the observation of worst-case preference ranking of N \ T , to obtain a lower bound, for
a ∈ [m], we have scoreN\T (a) = (n− |T |) · sm−a+1. Now, we can rewrite Equation (2) as follows,

τ

n∥s⃗∥1 · sℓ
·

m∑
a=1

sℓ · xa · (sℓ · xa + (n− |T |) · sm−i+1). (3)

Now, we simplify this expression to form a quadratic program and analyze its minimum. Since
τ

n∥s⃗∥1·sℓ is a constant value, we focus on the summation. For conciseness, define ya = sℓ · xa,
γa = (n− |T |) · sm−a+1, and β = sℓ · |T | · ℓ =

∑m
a=1 ya (holds due to

∑
a xa = |T | · ℓ). Then, we

have the following quadratic program with variables y = {ya}a∈A,

min

m∑
a=1

ya · (ya + γa)

s.t.
m∑

a=1

ya = β

ya ⩾ 0 ∀a ∈ [m]. (4)

Applying the KKT Conditions. Our objective is convex in ya’s, and it is easy to check that this
program satisfies the Slater’s condition for ya = β/m. Hence, we can apply the KKT conditions to
find the minimizer of this program. The Lagrangian for f(y) =

∑
a ya(ya+γa), g(y) = β−

∑
a ya,

and ha(y) = −ya, is

L(y, λ,µ) = f(y) + λg(y) +

m∑
a=1

µa · ha(y),
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where, in the dual program, µa is the variable for ya ⩾ 0 conditions and λ is for the single equality
condition. From the KKT conditions, we have ya’s are the minimizer of this function if

C1. (stationarity) ∀a ∈ [m], 2 · ya + αa − µa − λ = 0

C2. (primal feasibility) (1) ∀a ∈ [m], ya ⩾ 0 and (2)
∑m

a=1 = β

C3. (dual feasibility) ∀a ∈ [m], µa ⩾ 0

C4. (complementary slackness) ∀a ∈ [m], µa · ya = 0.

By C1 and C3, we have

ya ⩽
1

2
(λ− αa) .

For ya ̸= 0, we can multiply C1 by ya and using C4 (i.e. ya · µa = 0), we get

ya ̸= 0 ⇒ ya =
1

2
(λ− αa)

Therefore, ya = max{0, 1
2 (λ− αa)}. Let |C∗| be the number of non-zero ya’s (i.e. the number of

candidates with non-zero appearances among the top-ℓ votes of T ). Furthermore, by C2, we have
m∑

a=1

ya =

m∑
a=1

1

2
max{0, λ− αa} = β ⇒ λ =

1

|C∗|

2β +

|C∗|∑
a=1

αa

 (5)

Since α1 ⩽ α2 ⩽ . . . ⩽ αm, the final ya’s will form a decreasing series y1 ⩾ y2 ⩾ · · · ⩾ y|C∗| >
y|C∗|+1 = · · · ym = 0 with |C∗| many non-zero values. This is similar to a water-filling argument.
Initial levels are αa, and the water fills up from the bottom to level λ with a total water amount of 2β.

Deriving a Lower Bound. Now, we use the findings above to get a lower bound as follows
m∑

a=1

ya(ya + αa) ⩾
m∑

a=1

ya(ya + αa/2)

⩾
|C∗|∑
a=1

ya

(
1

2
(λ− αa) + αa/2

)

⩾
λ

2

|C∗|∑
a=1

ya =
λ · β
2

=
β

2
· 1

|C∗|

2β +

|C∗|∑
a=1

αa

 .

⩾ min
|C∗|∈[m]

β

2|C∗|
·

2β +

|C∗|∑
a=1

αa

 .

= min
|C∗|∈[m]

sℓ · |T |ℓ
2|C∗|

·

2sℓ · |T |ℓ+ (n− |T |) ·
|C∗|∑
a=1

sm−i+1

 .

Combined with Equation (2), we have

swT (f
rand
s⃗ ) ⩾ τ · |T |ℓ

2n∥s∥1
min

|C∗|∈[m]

1

|C∗|

2sℓ · |T |ℓ+ (n− |T |) ·
|C∗|∑
a=1

sm−i+1

 .

A.2 Distortion of Common Scoring Rules

Here, we use the insights and high-level strategies laid out above to analyze common randomized
positional scoring rules. At first, we derive only a lower bound on their minimum welfare and an
upper bound on their distortion, and later we show that our bounds are tight.
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A.2.1 Randomized Plurality

Lemma 10. The minimum welfare of the randomized plurality (randomized dictatorship) rule is
min-sw(f rand

s⃗plu
) ⩾ n

m2 .

Proof. For a ∈ A, let plu(a) = score(a, s⃗plu) be the score of alternative a. Then, sw(a) ⩾ plu(a) · 1m ,
since each voter deems a utility of at least 1

m for their top alternative. Then,

sw(fplu) =
∑
a∈A

plu(a)

n
· sw(a) ⩾ 1

n

∑
a∈A

plu(a)2

m

(1)

⩾
1

n

(∑
a∈A

plu(a)

m

)2

⩾
n

m2
,

where inequality (1) holds by the AM-QM inequality,and we used
∑

a∈A plu(a) = n in the last
inequality.2

Theorem 8. The distortion of the randomized plurality rule is O(m
√
m).

Proof. For an alternative a ∈ A, let N+
a ⊆ N be the set of agents whose top alternative is a. Then,

we have |N+
a | = plu(a), and

swN+
a
(a∗) =

∑
i∈N+

a

ui(a
∗) ⩽ |N+

a | = plu(a),

where the inequality comes from the unit-sum assumption that utilities are at most 1. Moreover,
swN+

a
(a) ⩾ swN+

a
(a∗), since voters in N+

a prefer a to a∗. Thus,

sw(f rand
s⃗plu

) =
∑
a∈A

plu(a)

n
· sw(a) ⩾ 1

n

∑
a∈A

swN+
a
(a∗) · swN+

a
(a∗)

⩾
1

n
· 1
m

(∑
a∈A

swN+
a
(a∗)

)2

=
sw(a∗)2

n ·m
,

where the second inequality holds by the AM-QM inequality. Consequently,

dist(fplu) ⩽
n ·m
sw(a∗)

.

Furthermore, by Lemma 10 we have dist(f rand
s⃗plu

) ⩽ sw(a∗)
n/m2 . Combining the two bounds, we have

dist(f rand
s⃗plu

) ⩽ min

{
m2 · sw(a∗)

n
,
n ·m
sw(a∗)

}
⩽

√
m2 · sw(a∗)

n
· n ·m
sw(a∗)

⩽ m
√
m.

A.2.2 Randomized Borda

The following lemma is useful to analyze the distortion of the randomized Borda rule.

Lemma 4. For any preference profile σ⃗, consistent utility profile u⃗ ∈ C(σ⃗), and alternative a ∈ A,
we have sw(a) ⩽ (Borda(a) + n)/m.

Proof. Fix an alternative a and agent i. By the unit-sum assumption, we have

ui(a) ⩽
1

ranki(a)
⩽

m− ranki(a) + 1

m
=

Borda(a, i) + 1

m
.

By summing over all agents, we get sw(a) ⩽ Borda(a)+n
m .

Lemma 5. The distortion of the randomized Borda rule is O(m5/4).
2This is an instantiation of Lemma 9 for k = ℓ = 1, τ = 1

m
, |T | = n.
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Proof. Fix any preference profile σ⃗ and consistent utility profile u⃗ ∈ C(σ⃗). Let
a∗ ∈ argmaxa∈A sw(a, u⃗) be an optimal alternative. By Strategy 2 from Section 3.1, we know
that the distortion is at most n∥s⃗Borda∥1

Borda(a∗) . Following Strategy 3 from Section 3.1 and the minimum wel-

fare analysis in Lemma 3, we have that distortion is at most sw(a∗)
n/(12m

√
m) , which, using Lemma 4, is at

most 12
√
m ·
(
Borda(a∗)/n+1

)
. Putting everything together, and using the fact that min{a, b} ⩽

√
ab

for all a, b ∈ R⩾0, the distortion is upper bounded by

min

{
n∥s⃗Borda∥1
Borda(a∗)

,
Borda(a∗) · 12

√
m

n
+ 12
√
m

}
⩽ 12

√
m+

√
n ·m(m− 1)/2

Borda(a∗)
· Borda(a

∗) · 12
√
m

n
⩽ 8
√
m+

√
6m5/4 = O(m5/4).

A.2.3 Randomized k-Approval

Lemma 11. The minimum welfare of the randomized k-approval rule is,

• when k ⩽
√
m, min-sw(f rand

s⃗k-approval
) ⩾ n

4m ·
k
m ,

• and when k >
√
m, min-sw(f rand

s⃗Borda
) ⩾ n

4(m−k+1) ·
1
k .

Proof. When k = m, f rand
s⃗k-approval

is equivalent to selecting an alternative uniformly at random, which
achieves a social welfare of exactly n

m . Now, suppose k ⩽ m− 1.

Fix any preference profile σ⃗ and consistent utility profile u⃗ ∈ C(σ⃗). First, similar to the analysis
of randomized Borda in Lemma 3, we make a few modifications to the preference profile that are
guaranteed to not increase the welfare, and then invoke Lemma 2. For conciseness, let s⃗ = s⃗k-approval,
and f = f rand

s⃗k-approval
.

Simplify the preference and utility profiles. By Lemma 6, to obtain a lower bound, we assume
without loss of generality that each agent i has a dichotomous utility, i.e. ui ∈ {1i,ℓ}ℓ∈[m]. Partition
N = N1 ∪N2, where N1 = {ui = 1i,ℓ | i ∈ N, ℓ ⩽ k} and N2 = {ui = 1i,ℓ | i ∈ N, ℓ > k}.
Case |N1| ⩾ |N2|. Fix an agent i ∈ N1. Let Ai be the set of top ℓ alternatives in σi and
ai ∈ argmina∈Ai

score(a, s⃗) be the alternative in Ai with the lowest score (equivalently, with the
lowest probability of selection under f ). Note that

∑
a∈Ai

ui(a) = 1. Now,

ui(f) ⩾
∑
a∈Ai

score(a, s⃗)

n∥s⃗∥1
· ui(a)

(1)

⩾
score(ai, s⃗)

n∥s⃗∥1
·

(∑
a∈Ai

ui(a)

)
⩾

score(ai, s⃗)

n∥s⃗∥1
· 1,

where (1) follows from the definition of ai. This can be rewritten as u′
i(f(σ⃗

′)), where σ⃗′ is a
preference profile in which each agent i ∈ N1 ranks ai first, and u⃗′ is a partial utility profile in
which each agent i ∈ N1 has utility of 1 for her top alternative and 0 for the rest. For i ∈ N2,
we assume they have 0 utility for all alternatives. Summing the above for all agents, we have
sw(f(σ⃗), u⃗) ⩾ sw(f(σ⃗′), u⃗′). Now, to lower bound it, we invoke Lemma 2 with s⃗ ← s⃗k-approval,
σ⃗ ← σ⃗′, u⃗← u⃗′, T = N1, τ ← 1, and ℓ← 1. Using ∥s⃗∥1 = k, this gives us

sw(f(σ⃗′), u⃗′) ⩾ 1 ·
n
2 · 1
2n · k

· min
h∈[m]

1

h

(
2 · n

2
· 1 + n

2
·max{0, h− (m− k)}

)
=

n

8k
· min
h∈[m]

(
2 + max{0, h− (m− k)}

h

)
⩾

n

8k
·min

{
2

m− k
,

3

m− k + 1
,

4

m− k + 2
, . . . ,

k + 2

m

}
(1)

⩾
n

8k
· 2

m− k + 1
=

n

4k(m− k + 1)
,

where (1) holds for k ∈ [m− 1].
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Case |N1| ⩽ |N2|. Any agent i ∈ N2 has a utility of at least 1
ℓ ⩾ 1

m for each of her top k alternatives.
This can be considered as a utility profile u⃗′ where agents i ∈ N2 have a utility of 1

m for their top k
alternatives and 0 for the rest, and agents i ∈ N1 have a 0 utility for all alternatives. Now, we invoke
Lemma 9 with k ← k, σ⃗ ← σ⃗, u⃗← u⃗′, T ← N2, τ ← 1

m , ℓ← k. Since ∥s⃗∥ = k, we have

sw(f(σ⃗), u⃗) ⩾
1

m
·
(
n
2

)2
nm

· k
2

k
=

nk

4m2
.

Since either of the two cases must hold,

sw(f(σ⃗), u⃗) ⩾ min

{
n

4k(m− k + 1)
,
nk

4m2

}
,

which completes the proof.

Lemma 12. The distortion of the randomized k-approvals rule is

• O
(m√

m

k
√
k

)
when k ⩽ m1/3,

• O(m) when m1/3 ⩽ k ⩽
√
m,

• and O(k
√
m− k + 1) when k >

√
m.

Proof. Fix any preference profile σ⃗ and consistent utility profile u⃗ ∈ C(σ⃗). Let a∗ ∈
argmaxa∈A sw(a, u⃗) be an optimal alternative. Partition the agents N = N+∪N− based on whether
they approve a∗ or not, i.e. N+ = {i ∈ N | ranki(a∗) ⩽ k} and N− = {i ∈ N | ranki(a∗) > k}.
Furthermore, sw(a∗) = swN+(a∗) + swN−(a∗). We derive distortion bounds for two cases based
on the comparison of swN+(a∗) and swN−(a∗), and report the maximum of the two bounds as the
upper bound. Before the case analysis, recall that by following strategy 3 and Lemma 11, we have

sw(f rand
s⃗k-approval

) ⩾ min-sw(f rand
s⃗k-approval

) ⩾ min

{
nk

4m2
,

n

4k(m− k + 1)

}
= g(n,m)

⇒ dist(f(σ⃗), u⃗) ⩽
sw(a∗)

g(n,m)
. (6)

Case swN+(a∗) ⩾ swN−(a∗). Since swN+(a∗) ⩽ |N+|, it follows that sw(a∗) ⩽ 2 · swN+(a∗) ⩽
2|N+|. By Equation (6), we have

dist(f(σ⃗), u⃗) ⩽
2|N+|
g(n,m)

.

By strategy 2 and that Pr[a∗ ∈ f(σ⃗)] = |N+|
nk , we get

dist(f(σ⃗), u⃗) ⩽
nk

|N+|
.

Putting the two together we have

dist(f(σ⃗), u⃗) ⩽ min

{
2|N+|
g(n,m)

,
nk

|N+|

}
(1)

⩽

√
2|N+|
g(n,m)

· nk

|N+|
=

√
2nk

g(n,m)
,

where (1) follows from the inequality min{a, b} ⩽
√
a · b for a, b ⩾ 0. By expanding g(n,m), we

have

dist(f(σ⃗), u⃗) ⩽


√

2nk
nk/(4m2) =

√
8 ·m, if k ∈ [1,

√
m],√

2nk
n/(4k(m−k+1) =

√
8 · k
√
m− k + 1 if k ∈ [

√
m,m].

(7)

Case swN+(a∗) < swN−(a∗). Similar to the previous case, sw(f(σ⃗), u⃗) ⩽ 2 · swN−(f(σ⃗), u⃗).
The key insight in this case is to apply strategy 2 (analyzing the welfare above a∗ in N−). First,
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construct a new utility profile by rounding down the utilities to the closest power of two, i.e.,
u′
i(a

∗) = 2⌊log2 ui(a
∗)⌋ and replace utilities less than 1

4m2 with 0. This way,

sw(a∗) ⩽ 2 · swN−(a∗, u⃗), and swN−(a∗, u⃗) ⩽ 2 · swN−(a∗, u⃗′) +
n

m2

Now, we subdivide N− based on their utility for a∗. Since ranki(a
∗) ⩾ k + 1 for all i ∈ N−,

ui(a
∗) ⩽ 1

k+1 (otherwise agent’s total utility for her top k + 1 alternatives exceeds one). For

z ∈
[
⌊log2 1

k+1⌋, ⌊log2
1

m2 ⌋
]
, let N−

z = {i ∈ Ni | u′
i(a

∗) = 2z}. For each group, let u⃗′
z be the

utility profile where agents i ∈ N−
z have utility of 2z for their top k votes and value the rest at 0,

and agents i ∈ N \N−
z have utility of 0 for all agents. Note that this is a decomposition of the u⃗′,

and each nonzero utilities is only considered in one of the u⃗′
z’s. Now, we invoke Lemma 9 with

s⃗← s⃗k-approval, σ⃗ ← σ⃗, u⃗← u⃗′
z , ℓ← k, k ← k, T ← N−

z , τ ← 2z , and we have

sw(f(σ⃗), u⃗′
z) ⩾ 2z · |T |

2

nm
· k

2

k
= 2z · |N

−
z |2 · k
nm

.

Since the utilities above are disjoint, we can combine the bounds above and derive

sw(f(σ⃗), u⃗′) ⩾
∑
z

2z · |N
−
z |2 · k
nm

.

We use the above combined with the absolute welfare guarantee in Equation (6), to derive the
distortion guarantee as follows.

dist(f(σ⃗), u⃗) =
sw(a∗, u⃗)

sw(f(σ⃗), u⃗))

⩽
4 · swN−(a∗) + 2n

m2

sw(f(σ⃗)

⩽
4 ·
∑

z 2
z · |N−

z |+ 2n
m2

max
{∑

z 2
z · k

nm · |N
−
z |2 , g(n,m)

}
⩽

2n

m2 · g(n,m)
+ 4

∑
z

2z · |N−
z |

max{2z · k
nm · |N

−
z |2, g(n,m)}

⩽ 8 + 4
∑
z

2z · |N−
z |

max{2z · k
nm · |N

−
z |2, g(n,m)}

(since g(n,m) ⩾
n

4m2
)

⩽ 8 + 4
∑
z

min

{
nm

|N−
z | · k

,
2z|N−

z |
g(n,m)

}

⩽ 8 + 4
∑
z

√
nm

|N−
z | · k

· 2
z|N−

z |
g(n,m)

(min{a, b} ⩽
√
ab)

(1)

⩽ 8 + 4

√
nm

k · g(n,m)
·
∑⌈log2(m

2)⌉

z=−⌈log2(k+1)⌉
(2z)

1
2

⩽ 8 +
4√
k
·
√

nm

g(n,m)
· 4√

k + 1
(2z ⩽

1

k + 1
),

where (1) holds due to the following∑⌈log2(m
2)⌉

z=−⌈log2(k+1)⌉
(2z)

1
2 ⩽

1√
k + 1

·
∞∑
j=0

2−
j
2 ⩽

1√
k + 1

· 2
∞∑
j=0

2−j ⩽
4√
k + 1

.

By expanding g(n,m), we have

dist(f(σ⃗), u⃗) ⩽ 8 +


16
k ·
√

nm
nk/(m2) = 16 · m

√
m

k
√
k
, if k ∈ [1,

√
m],

16
k ·
√

nm
n/(4k(m−k+1)) = 32 ·

√
m(m−k+1)√

k
, if k ∈ [

√
m,m].

(8)
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Now, by taking the pairwise maximum of Equations (7) and (8) we derive the following distortion
upper bounds,

dist(f(σ⃗), u⃗) ⩽


O(m

√
m

k
√
k
) if k ∈ [1,m1/3],

O(m) if k ∈ [m1/3,
√
m],

O(k
√
m− k + 1) if k ∈ [

√
m,m].

A.2.4 Randomized Harmonic

Boutilier et al. [22] proposed the rule that executes the randomized harmonic rule with probability
1/2 and selects an alternative uniformly at random with the remaining probability 1/2. They main
contribution was to show that this rule achieves O(

√
m logm) distortion (tightness of this bound was

shown by Ebadian et al. [19]), very close to their lower bound of Ω(
√
m). We show that the latter

half (uniform selection) of this rule, which is often critized as impractical, is largely unnecessary.
Simply executing the randomized harmonic rule achieves a distortion of Θ(

√
m logm), which is

only a Θ(
√
logm) factor larger. Let us first prove a lower bound on its minimum welfare.

Lemma 13. The minimum welfare of the randomized harmonic rule is min-sw(f rand
s⃗harmonic

) ⩾ n
mHm

.

Proof. Fix a preference profile σ⃗ and utility profile u⃗. Since all agents give a score of at least 1
m to

all the alternatives, score(a) ⩾ n
m . Therefore, by ∥s⃗harmonic∥1 = Hm, we have Pr[a ∈ f rand

s⃗harmonic
] =

score(a)
n∥s⃗∥1

⩾ 1
mHm

, and sw(f(σ⃗), u⃗) ⩾ 1
mHm

·
∑

a∈A sw(a) = n
mHm

.

Now, we show a well-known useful fact about harmonic scores.

Lemma 14 ([22]). For any preference profile σ⃗, consistent utility profile u⃗ ∈ C(σ⃗), and alternative
a ∈ A, we have sw(a, u⃗) ⩽ score(a, s⃗harmonic).

Proof. Fix an agent i ∈ N . Then,

scorei(a) =
1

ranki(a)
⩾ ui(a),

where the inequality is due to the unit-sum assumption, i.e. otherwise agent i’s total utility for her top
ranki(a) alternatives exceeds one. Summing above for all agents yields the sought goal.

Lemma 15. The distortion of the randomized harmonic rule is O(
√
mHm).

Proof. Fix a preference profile σ⃗ and utility profile u⃗. Let a∗ ∈ argmaxa∈A sw(a, u⃗) be an optimal
alternative. By strategy 3 (absolute welfare guarantee), we have

dist(f rand
s⃗harmonic

(σ⃗), u⃗) ⩽
sw(a∗)

n/(mHm)
⩽

mHm · score(a∗)
n

,

where the last inequality holds due to Lemma 14. Furthermore, by strategy 2 (probability of a∗), we
have

dist(f rand
s⃗harmonic

(σ⃗), u⃗) ⩽
nHm

score(a∗)
.

Putting the two together, we have

dist(f rand
s⃗harmonic

(σ⃗), u⃗) ⩽ min

{
mHm · score(a∗)

n
,

nHm

score(a∗)

}
⩽

√
mHm · score(a∗)

n
· nHm

score(a∗)
= Hm

√
m,

where the last inequality is due to min{a, b} ⩽
√
ab for a, b ⩾ 0. Since this holds for all preference

and utility profiles, dist(f rand
s⃗harmonic

) ⩽ Hm ·
√
m.
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A.3 Lower Bounds

Next, we prove tightness of the distortion upper bounds obtained above. We do this by deriving a few
general bounds.

Theorem 9. The distortion of any randomized positional scoring rule f rand
s⃗ with sm ⩽ s1/

√
m is

Ω
(∥s⃗∥1

s1
·
√
t∗
)
, where t∗ = argmaxt∈[m]

{
t |
∑t

j=1 sm−j+1 ⩽ s1
}

.

Proof. Consider the preference profile σ⃗ where alternative a∗ appears as the top choice of n/
√
t∗ of

the agents and the bottom of the list of the rest of them. Now consider set A1 of t∗ alternatives. Each
member of A1 appears as the top choice of (n−n/

√
t∗)/t∗ agents. Whenever a member of A1 is not

the top choice of an agent, she appears in the bottom t∗ places of his ranking. We create a symmetric
setting among these alternatives. Now think of the utility profile u⃗ in which each agent has utility of 1
for his top choice and zero for the rest. We have sw(a∗, u⃗) = n√

t∗
, for a ∈ A1, sw(a, u⃗) = n

t∗ and
the rest of the alternatives have zero social welfare. In addition for any positional scoring voting rule
f rand
s⃗ , we have

Pr[f rand
s⃗ (σ⃗) = a∗] =

s1n/
√
t∗ + sm(n− n/

√
t∗)

n∥s⃗∥1
⩽

s1 + sm
√
t∗

∥s⃗∥1
√
t∗

⩽
2s1

∥s⃗∥1
√
t∗
,

where the last inequality is due to the fact that sm
√
t∗ ⩽ sm

√
m ⩽ s1. In addition, for a ∈ A1,

Pr[f rand
s⃗ (σ⃗) = a] =

n
(
s1 +

∑t
j=1 sm−j+1

)
n∥s⃗∥1|A1|

⩽
2s1
∥s⃗∥1t∗

.

That implies

Ea∼f rand
s⃗

(σ⃗)[sw(a, u⃗)] =
∑
a∈A

Pr[f rand
s⃗ (σ⃗) = a] · sw(a, u⃗)

= Pr[f rand
s⃗ (σ⃗) = a∗] · sw(a∗, u⃗) +

∑
a∈A1

Pr[f rand
s⃗ (σ⃗) = a] · sw(a, u⃗)

⩽
2s1

∥s⃗∥1
√
t∗
· n√

t∗
+ t∗ · 2s1

∥s⃗∥1t∗
· n
t∗

⩽
4n

∥s⃗∥1t∗
.

⇒ dist(f rand
s⃗ ) ⩾ dist(f rand

s⃗ , σ⃗) ⩾
n/

√
t∗

4ns1/∥s⃗∥1t
∗
⩾
∥s⃗∥1
√
t∗

4s1
= Ω

(
∥s⃗∥1
s1
·
√
t∗
)
.

Corollary 10. The lower bounds on the distortion of common randomized positional scoring rules
implied by Theorem 9 are shown in Table 2. These are tight for the randomized harmonic rule, the
randomized k-approval rule with k = Ω(

√
m), and the randomized veto rule.

Next, we derive another general lower bound, which would help us establish the tightness for some
more randomized positional scoring rules.

Theorem 11. Let s⃗ be a scoring vector with at most k non-zero values, i.e. ∀j ∈ [k + 1,m], sj = 0.

Then, f rand
s⃗ incurs a distortion of at least dist(f rand

s⃗ ) = Ω
(

m
√
m

k
√
k

)
.

Proof. Assume that m− 1 is divisible by 3. Let a∗ be some alternative and partition the rest of the
alternatives into three sets A1, A2, A3, each of size (m−1)/3. In addition we partition the agents into
two sets N1 of size n

√
k/m and N2 = N \ N1. Consider the preference profile where members

of N1 fill the top k positions of their rankings with members of A1 and the rest of the agents have
members of A2 in the top k position of their rankings (the preference profile is symmetric among
the members of each set, i.e., each member of Ai appears in the j-th position of |Ni|/(|Ai| · k)
agents). Every agent has a∗ in the k + 1-th position, and all the members of A3 after that (up to rank
k + 1 +m/3). We do not care about the rest of the preference profile.
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Table 2: Lower bounds on the distortion of common randomized positional scoring rules, achieved
by Theorem 9.

Rule name Scoring vector s⃗ ∥s⃗∥1 s1 t∗ Lower bound

Harmonic (1, 1
2
, 1
3
, . . . , 1

m
) Hm 1 > m

2
Ω(
√
m logm)

Veto (1, 1, . . . , 1, 0) m− 1 1 2 Ω(m)

Half harmonic,

half uniform

(1+ Hm
m

, 1
2
+ Hm

m
, . . . , Hm+1

m
) 2Hm 1 + Hm

m
> m

2Hm
Ω
(√

m logm
)

k-approval (1, . . . , 1︸ ︷︷ ︸
k ones

, 0, . . . , 0) k 1 m− k + 1 Ω
(
k
√
m− k + 1

)
Plurality (1, 0, . . . , 0) 1 1 m Ω(

√
m)

Borda (m− 1,m− 2, . . . , 0) m(m−1)
2

m− 1 >
√
m Ω

(
m

5
4

)

Now consider the utility profile u⃗ where members of N1 have a utility of 1/(k+1) for their top k+1
alternatives and members of N2 have a utility of 1/(k+ 1+m/3) for each of their top k+ 1+m/3
alternatives. We have

sw(a∗, u⃗) = |N1|
1

k + 1
+ |N2|

1

k + 1 +m/3
⩾

n
√

k
m

k + 1
>

n√
km

,

a1 ∈ A1 =⇒ sw(a1, u⃗) =
|N1|
|A1|

k

k + 1
=

nk
√

k
m

m(k + 1)/3
<

3n
√
k

m
√
m
,

a2 ∈ A2 =⇒ sw(a2, u⃗) =
|N2|
|A2|

k

k + 1 +m/3
=

nk

(
1−

√
k
m

)
m(k + 1 +m/3)/3

<
9nk

m2
.

On the other hand, if we consider the probability given to each candidate we have:

Pra∼f rand
s⃗

(σ⃗)[a = a∗] = 0,

Pra∼f rand
s⃗

(σ⃗)[a ∈ A1] =
|N1|
n

=

√
k

m
,

Pra∼f rand
s⃗

(σ⃗)[a ∈ A2] < 1,

which means

Ea∼f rand
s⃗

(σ⃗)[sw(a, u⃗)] ⩽

√
k

m
· 3n
√
k

m
√
m

+ 1 · 9nk
m2

=
12nk

m2
,

and that implies:

dist(f rand
s⃗ (σ⃗), u⃗) ⩾

sw(a∗, u⃗)

Ea∼f rand
s⃗

(σ⃗)[sw(a, u⃗)]
⩾

n√
km

12nk
m2

=
m
√
m

12k
√
k
∈ Ω

(
m
√
m

k
√
k

)
.

The theorem above immediately shows that our analysis for randomized k-approvals rules with
k ∈ [m1/3] in Lemma 12 is in fact tight.

Corollary 12. The randomized k-approval rule with k ∈ [m1/3] incurs a distortion of Ω
(m√

m

k
√
k

)
.
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The results above do not match our upper bound of O(m) for the randomized k-approval rule when
k ∈ [m1/3,

√
m]. In the following, we separately establish a matching lower bound of Ω(m) for this

case as well.
Lemma 16. The randomized k-approval rule with k ∈ [m1/3,

√
m] incurs a distortion of Ω(m).

Proof. Suppose m− 1 is divisible by 2. Let a∗ be an alternative. Partition the rest of the alternatives
into two subsets of A1, A2 each of size (m−1)/2. Then, construct a preference profile as follows. Let
nk
m agents N1 have a∗ as their top vote. Divide the other top k − 1 top alternatives of N1 and all the
top k alternatives of N \N1 among A1. This way,

∀a ∈ A1, score(a) ⩽
nk

|A1|
⇒ Pr[a] ⩽

1

|A1|
,

and Pr[a∗] = |N1|
nk . Divide the k + 1 to m/2-th ranks of all voters among alternatives A2 and fill the

bottom of the ranking arbitrarily. This way, for all a ∈ A2, Pr[a] = 0 since they have a score of 0.

Furthermore, suppose N1 have a utility of 1 for a∗ and 0 for the rest, and N \N1 have a utility of 2
m

for their top m
2 alternatives. This way,

∀a ∈ A1 sw(a) ⩽
nk

|A1|
· 2
m
.

Then,

sw(f rand
s⃗k-approval

) ⩽ Pr[a∗] · sw(a∗) +
∑
a∈A1

Pr[a] · sw(a) +
∑
a∈A1

Pr[a] · sw(a)

⩽
|N1|
nk
· |N1|+ |A1| ·

1

|A1|
· 2nk

|N1| ·m
.

Hence,

dist(f rand
s⃗k-approval

(σ⃗)) ⩾
|N1|

1
nk · |N1|2 + 2nk

|N1|·m

⩾ min

{
nk

|N1|
,
|N1|m
2nk

}
,

which for the choice of |N1| = nk
m gives a lower bound of Ω(m).

Finally, it remains to show that our lower bounds on minimum welfare of these randomized positional
scoring rules are also tight. This follows easily because our distortion upper bounds are essentially
derived as a function of the minimum welfare bounds, and one can check that in each case an
asymptotically better lower bound on minimum welfare would translate to an asymptotically better
upper bound on distortion, which is not possible because we have already established tightness of our
distortion bounds for the common randomized positional scoring rules.
Corollary 13. The minimum welfare bounds presented in Table 1 for the randomized versions of
plurality, Borda, harmonic, veto, and k-approval rules are asymptotically tight.

A.4 Randomized Approval Mixture Rules

As a step towards analyzing the distortion of randomized positional scoring rules for any scoring
vector, we present our distortion bounds for approval mixture scores, which are tight up to logarithmic
factors.
Definition 14 (Approval Mixture Scores). For k1 < k2 < . . . < kR ∈ [m], the approval mixture
score denoted by {k1, . . . , kR}-mix-approval is defined as

s⃗{k1,...,kR}-mix-approval =
1

R

R∑
r=1

s⃗kr-approval

∥s⃗kr-approval∥1
,

that is the uniform mixture of the kr-approval scores.

This class of scores generalizes our results for randomized k-approvals (hence, plurality, veto).
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A.4.1 Minimum Welfare Analysis

Lemma 17. Fix any constant ϵ > 0 and k1 < k2 . . . < kR ∈ [(1− ϵ)m]. The minimum welfare of
the randomized approval mixture rule with s⃗{k1,...,kR}-mix-approval scoring vector is

min-sw(f rand
s⃗{k1,...,kR}-mix-approval

) = Ω

(
n

m
· 1

R log2 m
min

{
1

k1
,

√
k1
k2

,

√
k2
k3

, · · · ,
√

kR−1

kR
,
kR
m

})
.

Proof. Fix any preference profile σ⃗ and consistent utility profile u⃗ ∈ C(σ⃗). For conciseness, we use
s⃗ = s⃗{k1,...,kR}-mix-approval.

Similar to the analysis in Lemma 11, to obtain a lower bound, by Lemma 6 we may assume without
loss of generality that agents have dichotomous utilities, i.e. ui ∈ {1i,ℓ}ℓ∈[m]. To obtain a lower
bound, we construct a new partial utility profile u⃗′ by rounding down the utilities to the nearest power
of two, i.e. u′

i ∈ 1
2 · {1i,2z}z∈[⌊log2 m⌋]. Now, we partition agents by their utility vectors to logm

many groups, i.e. for z ∈ [⌊log2 m⌋], define Nz = {i | u′
i = 1i,2z}. Furthermore, decompose u⃗′ to

{u⃗′
z}z∈[logm] where u⃗′

z is u⃗′ except that agents in N \Nz have 0 utility for all alternatives. Now, we
derive welfare lower bounds for each group by invoking Lemma 9 with σ⃗ ← σ⃗, u⃗← u⃗′

z , ℓ← 1
2 ·

1
2z ,

T ← Nz , τ ← 2z . We assign parameter k based on the different cases below.

Case 2z ∈ [k1]. Invoking Lemma 9 with above and k ← k1, we have

sw(f rand
s⃗k1 -approval

, u⃗′
z) ⩾

1

2
· 1
2z
· |Nz|2

nm
· (2

z)2

k1
=
|Nz|2 · 2z

2nmk1
.

Since 2z ⩾ 1,

sw(fs⃗) ⩾
1

R
· sw(f rand

s⃗k1 -approval
) ⩾

|Nz|2

2R · nm
· 1
k1

.

Case 2z ∈ [kr, kr+1]. Invoking Lemma 9 with above and k ← kr, we have

sw(f rand
s⃗kr -approval

, u⃗′
z) ⩾

1

2
· 1
2z
· |Nz|2

nm
· (min{2z, kr})2

kr
=
|Nz|2

2nm
· kr
2z

.

By invoking Lemma 9 for k ← kr+1, we have

sw(f rand
s⃗kr+1 -approval

, u⃗′
z) ⩾

1

2
· 1
2z
· |Nz|2

nm
· (min{2z, kr+1})2

kr+1
=
|Nz|2

2nm
· 2z

kr+1
.

Thus,

sw(f rand
s⃗ , u⃗′

z) ⩾
1

R
·
(
sw(f rand

s⃗kr -approval
, u⃗′

z) + sw(f rand
s⃗kr+1 -approval

, u⃗′
z)
)

⩾
1

R
· |Nz|2

2nm

(
kr
2z

+
2z

kr+1

)
(1)

⩾
|Nz|2

R · nm
·

√
kr

kr+1
,

where (1) follows from the AM-GM inequality.

Case 2z ∈ [kR,m]. Invoking Lemma 9 with above and k ← kR, we have

sw(f rand
s⃗k1 -approval

, u⃗′
z) ⩾

1

2
· 1
2z
· |Nz|2

nm
· (min{2z, kR})2

kR
=
|Nz|2

2nm
· kR
2z

.

Since 2z ⩽ m, we have

sw(fs⃗) ⩾
1

R
· sw(f rand

s⃗k2 -approval
) ⩾

|Nz|2

2R · nm
· kR
m

.

For at least one value of z ∈ [log2 m] we have |Nz| ⩾ n
logm , by the pigeon-hole principle. Thus, we

can take the minimum of the three cases above with |Nz| ⩾ n
logm to obtain a lower bound as follow

sw(f rand
s⃗ ) ⩾

(
n

logm

)2
2R · nm

min

{
1

k1
,minr∈[R−1]

{√
kr

kr+1

}
,
kR
m

}

=
n

2R ·m log2 m
·min

{
1

k1
,

√
k1
k2

,

√
k2
k3

, . . . ,

√
kR−1

kR
,
kR
m

}
.
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A.4.2 Distortion Analysis

Theorem 15. Fix any constant ϵ > 0 and k1 < k2 . . . < kR ∈ [(1 − ϵ)m]. The distortion of the
randomized approval mixture rule with s⃗{k1,...,kR}-mix-approval scoring vector is

O

(
R logm ·

√
n

g
·

√
max

{
k1,min

(
k2
k1

,
m

(k1)2

)
, . . . ,min

(
kR

kR−1
,

m

(kR−1)2

)
,

m

(kR)2

})
,

where g = min-sw(f rand
s⃗{k1,...,kR}-mix-approval

).

Proof. Fix any preference profile σ⃗ and consistent utility profile u⃗ ∈ C(σ⃗). Let a∗ ∈
argmaxa∈A sw(a, u⃗) be an optimal alternative.

Partition the agents based on their score to a∗, i.e., for r ∈ [1, R] define Nr = {i ∈ N | ranki(a∗) ∈
[kr−1, kr]} (k0 = 1) and let NR+1 = {i ∈ N | ranki(a∗) ∈ [kR,m]} be the agents who give score
of 0 to a∗. Furthermore,

sw(a∗) =
∑
r∈[R]

swNr
(a∗) ⩽ R ·maxr∈[R] swNr

(a∗). (9)

Suppose the maximum above is achieved at Nr∗ . Next, we show upper bounds on distortion based
on the value of r∗, and report the maximum of all as a distortion upper bound. Before doing so, to
obtain an upper bound on the distortion, we round down agents utility to the nearest power of two,
ignore utilities less than 1

m2 (replace with 0). Call the new utility profile u⃗′. Then,

sw(a∗, u⃗) ⩽ 2 · sw(a∗, u⃗′) +
n

m2
and sw(f(σ⃗), u⃗) ⩽ sw(f(σ⃗), u⃗′)

⇒ dist(f(σ⃗), u⃗) ⩽
n/m2

sw(f(σ⃗), u⃗)
+ 2 · dist(f(σ⃗), u⃗′) ⩽ 4 + 2 · dist(f(σ⃗), u⃗′)

where the last inequality is due to Lemma 7.

Strategy 1 (Welfare above a∗). Now, we subdivide each group Nr based on their utility for
a∗ and derive welfare lower bounds by invoking Lemma 9. Fix r ∈ [2, R + 1] and for
z ∈

[
⌊log2 1

kr−1+1⌋, ⌊log2
1

m2 ⌋
]
, let Nr,z = {i ∈ Nr | u′

i(a
∗) = 2z}. Since for agents i ∈ Nr,

ranki(a
∗) ⩾ kr−1 + 1, u′

i(a
∗) ⩽ 1

k+1 (otherwise, the unit-sum assumption is violated since her total
utility for her top kr−1 + 1 alternatives exceeds one). Now, for each subgroup, we invoke Lemma 9
with s⃗← s⃗k(r−1)-approval, T ← Nr,z , σ⃗ ← σ⃗, τ ← 2z , ℓ← kr−1, k ← kr−1, and we have

sw(f(σ⃗), u⃗′
z) ⩾ 2z · |T |

2

nm
· (kr−1)

2

kr−1
= 2z · |Nr,z|2 · kr−1

nm
(10)

Strategy 2 (Probability of a∗). Following strategy 2, for r ∈ [1, R], we have

Pr[a∗ ∈ f(σ⃗)] ⩾
1

R
· |Nr|
nkr

⇒ dist(f(σ⃗), u⃗′) ⩽ R · nkr
|Nr|

. (11)

Strategy 3 (Absolute Welfare Guarantee). Following strategy 3 and by Lemma 17, we have

sw(f) ⩾ min-swn,m(f) = g(n,m) ⇒ dist(f(σ⃗), u⃗′) ⩽
sw(a∗)

g(n,m)
. (12)

We are ready to show distortion upper bounds based on the choice of r∗.

Case r∗ = 1. In this case, we only apply strategies 2 and 3 to Nr∗ (not the subgroups). By Equation (9)
we have sw(a, u⃗) ⩽ R · swN1(a, u⃗). Furthermore, swN1(a

∗) ⩽ |N1|. Then, by Equations (11) and
(12),

dist(f(σ⃗), u⃗′) ⩽ min

{
R · |N1|
g(n,m)

, R · nk1
|N1|

}
⩽ R ·

√
nk1

g(n,m)
. (13)
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Case r∗ ∈ [2, R]. We use all the three strategies here. By the pigeonhole principle, there exists a
z∗ ∈ [logm2] such that swNr∗ (a

∗) ⩽ 2 logm · swNr∗,z∗ (a
∗) ⩽ 2 logm · 2z · |Nr∗,z∗ |. Thus, by

Equation (10) in strategy 1,

dist(f(σ⃗), u⃗′) ⩽ 2R logm · 2z · |Nr∗,z∗ |
2z · |Nr∗,z∗ |2·k(r∗−1)

nm

= 2R logm · nm

|Nr∗,z∗ | · k(r∗−1)

Combined with Equation (11) in strategy 2 we get

dist(f(σ⃗), u⃗′) ⩽ 2R logm ·min

{
nm

|Nr∗,z∗ | · k(r∗−1)
,

nkr∗

|Nr∗,z∗ |

}
Putting together with Equation (12) in strategy 3 we get

dist(f(σ⃗), u⃗′) ⩽ min

{
2R logm · 2

z∗ · |Nr∗,z∗ |
g(n,m)

, 2R logm ·min

{
nm

|Nr∗,z∗ | · k(r∗−1)
,

nkr∗

|Nr∗,z∗ |

}}
.

⩽ 2R logm ·

√
n

g(n,m)
· 1

kr−1
·min

{
m

kr∗−1
, kr∗

}
Case r∗ = R + 1. This case follows exactly like the previous case except that we cannot apply
strategy 2, since probability of selection and the score of a∗ from ranks below kR is 0. Thus,

dist(f(σ⃗), u⃗′) ⩽ 2R logm ·

√
n

g(n,m)
· 1

kr−1
· m
kR

.

Now, we report an upper bound on distortion by taking the maximum of all cases. Hence,

dist(f(σ⃗), u⃗) ⩽ 4 + 2 · dist(f(σ⃗), u⃗′)

⩽ 4 + 4 ·R logm ·
√

n

g(n,m)
·√

max

{
k1,min

{
k2
k1

,
m

(k2)2

}
, . . .min

{
kR

kR−1
,

m

(kR)2

}
,
kR
m

}
.

Deriving Distortion of the Randomized t-Truncated Harmonic Rules. Next, we apply the result
above to a natural extension of the harmonic scores, which was recently used by Gkatzelis et al. [26].
Define the t-truncated harmonic scoring vector as follows

s⃗t-harmonic = (1, 1/2, . . . , 1/t, 0, . . . , 0),

for which the first t scores is equal to the s⃗harmonic and the rest is 0. For simplicity, suppose t is a
power of two. By rounding the scores, we have

s⃗ ′
t-harmonic = (1, 1/2, 1/4, 1/4, 1/8, . . . , 1/t, 0, . . . , 0),

Now, take the {1, 2, . . . , log2 t}-mix-approval scoring vector. Since si = 1
log t

∑log t
j=⌈log i⌉

1
2j It holds

that
s′i ⩽ si ⩽ log t · s′i,

by Lemma 1 we can approximate dist(f rand
s⃗t-harmonic

) up to O(logm) factor by analyzing the randomized
{1, 2, . . . , log2 t}-mix-approval rule. To analyze this rule, we utilize the bounds from Theorem 15
and Lemma 17. Note that kr

kr−1
= 2 for all r ∈ [2, R], k1 = 1, and kR = t. Then,

min-sw(f rand
{1,2,...,log2 t}-mix-approval) = Ω

(
n

m
· 1

log t · log2 m
·min

{
1,

√
1

2
,

√
1

2
, . . . ,

√
1

2
,
t

m

})

= Ω

(
n

m
· 1

log t · log2 m
· t

m

)
= g
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Furthermore, dist(f rand
{1,2,...,log2 t}-mix-approval) is at most

O

(
log t · logm ·

√
n

g
·
√

max
{
1,min

(
2,m

)
,min

(
2,

m

22
)
,min

(
2,

m

42
)
, . . . ,min

(
2,

m

t2
)
,
m

t2

})
= O

(
log t · logm ·

√
n

g
·max

{
1,

√
m

t2

})
= O(polylog(t,m) ·

√
m2

t
·max

{
1,

√
m

t2

}
)

=

{
O(m

√
m

t
√
t
· polylog(t,m)) if t ⩽

√
m,

O( m√
t
· polylog(t,m)) if t ∈ [

√
m,m].

B Random k-Committee Member Rules

B.1 Lower Bound

We begin by proving a lower bound on the distortion of any randomized rule with a support size of at
most k, including, but not limited to, the ones that pick the winner uniformly at random from this
support.
Theorem 16. For k ∈ [m/3], any randomized voting rule that has a support size of at most k incurs
a distortion of at least Ω(m2/k2).

Proof. Consider voting rule f , which has a support of size at most k. We create a preference profile
σ⃗ and argue that the distortion of any such voting rule on this preference profile is at least m2

/6k2.
Partition the alternatives into two sets, A1 with size m− k, and A2 with size k. In σ⃗ each member of
A1 appears as the top choice of n/(m− k) agents, and each member of A2 appears as the second
choice of n/k agents, in a way that each pair appears in the top-2 positions of n/(k(m− k)) agents.
If the rule gives positive probability to all members of A2, then consider the utility profile where
each agent has utility 1 for her top choice and 0 for the rest. The social welfare of all alternatives
with positive probability is zero, hence the distortion of this voting rule is unbounded. Now we
can assume that there exists a∗ ∈ A2, that has probability zero in the output. Let A+

1 ⊆ A1 be the
set of alternatives in A1 that get positive probability in f(σ⃗), and A−

1 = A1 \ A+
1 . Consider the

utility profile agents that have members of A+
1 as their top choice has the utility of 1/m for all the

alternatives, agents that have members of A−
1 as their top choice and a∗ as their second choice have

utility 1/2 for their top 2 alternatives and 0 for the rest, and other agents have utility 1 for their top
choice and 0 for the rest. In this utility profile, we have

sw(a∗) ⩾
1

2
· |A

−
1 |n

k(m− k)
⩾

(m− 2k)n

2k(m− k)
⩾

n

4k
,

and for a′ ∈ A+
1 ∪A2 \ {a∗}:

sw(a′) ⩽
1

m
· |A

+
1 |n

m− k
⩽

3k

2m2
.

That gives a bound on the social welfare of any alternative with positive probability and implies that
Ea∼f(σ⃗)[sw(c)] ⩽

3k
2m2 which means dist(f(σ⃗), σ⃗) ⩾

n/4k
3k/2m2 = m2

6k2 .

We are now ready to prove the desired lower bound for random k-committee member rules.
Theorem 3. For k ∈ [m], the random k-committee member rule incurs Ω(max(k,m2/k2)) distor-
tion. This lower bound is at least Ω(m2/3) for all k.

Proof. First, consider the preference profile where all the agents have the same ranking with a∗ as
their top choice. Now consider the utility profile where each agent has utility 1 for his top choice and
zero for the rest. In this utility profile, if the selected committee does not include a∗ then the distortion
is unbounded, and if a∗ is part of the committee then the distortion is k. On the other hand, by we
have the lower bound of Ω(m2/k2) which gives us the desired bound of Ω

(
max

(
k, m2

k2

))
.
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ALGORITHM 1: Top-Biased Stable k-Committee
Input: Preference profile σ⃗, Committee size k
Output: Shortlisted Committee of size k

1 Astable ← an approximately stable committee of size k/3
2 Aplu ← top k/3 alternatives with the highest plurality score
3 N1 ← voters whose top vote is among Aplu

4 Agreedy ← ∅
5 for i ∈ N1 do hits(i) = 1
6 for t = 1 to k/3 do
7 A← A \ (Aplu ∪Agreedy ∪Astable)
8 for i ∈ N1 do
9 Si ← top m/(hits(i) + 1) alternatives of i among A

10 a∗ ← argmaxa∈A |{i ∈ N1 | a ∈ Si}|
11 Agreedy ← Agreedy ∪ {a∗}
12 for i ∈ N1 and a∗ ∈ Si do
13 hits(i)← hits(i) + 1
14 return Aplu ∪Agreedy ∪Astable

B.2 Upper Bound

Our algorithm uses the notion of Approximately Stable Committees introduced by Jiang et al. [40]
and used by Ebadian et al. [19] in the design of the Stable Committee Rule.

Definition 17 (Approximately Stable Committee[40]). A committee X ⊆ A of size k is α-stable w.r.t.
preference profile σ⃗ if for any candidate a ∈ A we have |i ∈ N : a ≻i X| ⩽ α · nk , where a ≻i X
means that voter i prefers a to every member of X .

Theorem 18 ([40]). Given any preference profile and k ∈ [m], a 16-stable committee of size k exists.

Algorithm 1 starts with selecting an approximately stable committee of size k/3 and k/3 alternatives
with the highest plurality scores. Then, to gain more social welfare from the alternatives N1 whom
top alternative is selected by the algorithm, it proceeds as follows. Initialize hits(i) to one. The point
of the hits count is that we can ensure a welfare of hits(i)

m by when the procedure ends. Initially, we
can ensure a welfare of 1

m for all agents in N1. Next, the sets Si are set to be the top m/2 alternatives
of agents in N1. We will show that picking any of these alternatives will guarantee a welfare of at
least 2

m for a user. The algorithm makes a greedy choice a∗ that hits the highest number of agents
and adds that alternative to the selected committee and increases the hit number of the agents hit by
a∗. After the second hit, it updates the sets Si to be the top m/3 remaining alternatives of the hit
agent. Then m/4 after the thirds, and so forth. The algorithm selects the remaining k/3 alternatives
of the committee as described.

B.2.1 Absolute Welfare Lower Bound

For the absolute welfare lower bound analysis, we will show that for each voter i ∈ N1 we can
guarantee a utility of at least hits(i)/m. First, we present a helpful technical lemma.

Lemma 18. Consider agent i ∈ N with preference profile σi and utility function ui, and a set
A′ ⊆ A of alternatives. If A′ includes the top choice of i, and for any 2 ⩽ ℓ ⩽ t at least t− ℓ+ 2
members of A′ appear in the top m/ℓ choices of i, then the total utility of i for members of A′ is at
least t/m, i.e.

∑
a∈A′ ui(a) ⩾ t/m.

Proof. We can write ui as a weighted sum of m dichotomous utility functions, i.e. ui =
∑m

j=1 αj1i,j ,
where

∑m
j=1 αj = 1. For j ∈ [m] we define

g(j) =

{
t− ⌈m/j⌉+ 2 j ⩾ m/t,

1 o.w.,

as a lower bound on the number of members of A′ that appear in the top j positions of this agent’s
preference ranking. Each of these alternatives gets 1/j utility in 1i,j . If we sum it up for all values of
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j, we have

ui(a) ⩾
∑

j⩾ranki(a)

αj/j =⇒
∑
a∈A′

ui(a) ⩾
m∑
j=1

αj
g(j)

j
.

For j < m/t, g(j)/j ⩾ t/m, and after that t−⌈m/j⌉+2
j is increasing up to j = 2m/t+2, decreasing

afterwards, and is minimized at j = m. That means g(j)/j is always greater than t/m, which implies∑
a∈A′

ui(a) ⩾
m∑
j=1

αj
g(j)

j
⩾

t

m

m∑
j=1

αj =
t

m
.

Theorem 19. For k ∈ [m], there exists a deterministic k-committee selection voting rule f∗
k , that for

any pair of σ⃗, u⃗ guarantees
∑

a∈f∗
k (σ⃗)

sw(a, u⃗) ⩾ nk
√
k

6m2 .

Proof. Let Â be the set of alternatives returned by Algorithm 1. First, we show by Lemma 18 that
for all agents i ∈ N1,

∑
a∈Â ui(a) ⩾ hits(i)/m. That is because Aplu includes the top choice of

members of N1. In addition by changing Si in line 9 of the Algorithm 1, we make sure that the
i-th hit in an agent’s preference ranking is among his m/i top alternatives. This means that at the
end if there are t hits in an agent’s ranking, then for any 2 ⩽ ℓ ⩽ t at least t − ℓ + 2 members of
Agreedy ∪Aplu appear in that agent’s top m/ℓ positions.

Consequently, we have ∑
a∈Â

sw(a) ⩾
∑
i∈N1

hits(i)

m
. (14)

Lower bound on the total number of hits. Next, we show
∑

i∈N1
hits(i) ⩾ |N1| ·

√
k. Let

a1, a2, . . . , ak/3 be the sequence of alternatives greedily picked in the algorithm (lines 6-13). For
t ∈ [k/3], let hitst(i) be the number of hits of voter i at the beginning of iteration t and ht be the
number of voters that were hit by at during the t-th iteration. Let hmin = mint∈[k/3] ht. Indeed we
have ∑

i∈N1

hits(i) =
∑

t∈[k/3]

ht ⩾ hmin · k/3. (15)

Moreover, since at iteration t we pick the candidate which hits the highest number of agents, ht is at
least as much as the average total |Si|’s, i.e.

ht ⩾
1

m
·
∑
i∈N1

|Si| ⩾
1

m
·
∑
i∈N1

m

hitst(i) + 1
⩾

|N1|2∑
i∈N1

hitst(i) + |N1|
,

where the last transition follows from the AM-HM inequality. Since the RHS is minimized at time
t = k/3 (the sum in the denominator is non-decreasing), and by Equation (15), we have

3

k
·
∑
i∈N1

hits(i) ⩾ hmin ⩾
|N1|2∑

i∈N1
hits(i) + |N1|

Denote α =
∑

i∈N1
hits(i). Then, we have α · (α+ |N1|) ⩾ k

3 |N1|2, which holds only if∑
i∈N1

hits(i) = α ⩾
1

2
· |N1|

(√
1 + 4k/3− 1

)
⩾ |N1|

√
k/3, (16)

where the last transition holds for k ⩾ 1.

Deriving the bound. Moreover, |N1| ⩾ nk/3m, since the k/3 alternatives with the highest number
of top votes must have a total of at least k/3m fraction of the n top votes. This observation combined
with Equations (14) and (16) yields∑

a∈Â

sw(a) ⩾
1

3
√
3
· nk
√
k

m2
.
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B.2.2 Distortion Analysis

The goal of this section is to prove the following theorem.
Theorem 4. There is a polynomial-time computable random k-committee member rule with distortion
O(max{k,m2/(k

√
k)}). This is minimized at k = m4/5, where the bound becomes O(m4/5).

Proof. We select k
3 members of the committee using f∗

k
3

from Theorem 19 rule and for the rest, we

select a 16-stable committee of size k
3 .

For a preference profile σ⃗ and utility profile u⃗, let a∗ be the optimal alternative, and X ⊆ A be a
committee of size k selected by our rule. By Theorem 18 we know that |i ∈ N : a∗ ≻i X| ⩽ 48n

k .
That means for at least n− 48n

k agents, at least one member of the selected committee gets as much
utility as a∗. The maximum utility that a∗ can get from the rest of the agents is 48n

k . That means:

sw(a∗, u⃗) ⩽
∑
a∈X

sw(a, u⃗) +
48n

k
.

Let U[X] be a uniform distribution over the members of X , we have

dist(U[X], u⃗) =
sw(a∗, u⃗)

1
|X|
∑

a∈X sw(a, u⃗)

=
2k · sw(a∗, u⃗)

2
∑

a∈X sw(a, u⃗)

⩽
2ksw(a∗, u⃗)

max(0, sw(a∗, u⃗)− 48n
k ) +

n k
3

√
k
3

6m2

(by Theorem 19)

⩽
2ksw(a∗, u⃗)

max(0, sw(a∗, u⃗)− 48n
k ) + nk

√
k

32m2

.

Now we consider two cases, first if sw(a∗, u⃗) ⩾ 96n
k . In this case we have

dist(U[X], u⃗) ⩽
2ksw(a∗, u⃗)

max(0, sw(a∗, u⃗)− 48n
k ) + nk

√
k

32m2

⩽
2ksw(a∗, u⃗)

sw(a∗, u⃗)− 48n
k

⩽
4ksw(a∗, u⃗)

sw(a∗, u⃗)
= 4k = O (k) .

Then we consider the other case where sw(a∗, u⃗) < 96n
k . Here we have

dist(U[X], u⃗) ⩽
2ksw(a∗, u⃗)

max(0, sw(a∗, u⃗)− 48n
k ) + nk

√
k

32m2

⩽
2ksw(a∗, u⃗)

nk
√
k

32m2

⩽
2k 96n

k

nk
√
k

32m2

= O

(
m2

k
√
k

)
.

These two bounds together give us the desired lower bound of O(max{k,m2/(k
√
k)}).

C Additional Experimental Results

In this section, we provide some complementary results that give a better perspective on the empirical
efficiency of the rules we study. The setup of these experiments is the same as described in Section 5.

Results. Figures 2a to 2c show the average distortion of different rules for different values of ϕ
with m ∈ {5, 25, 50}, respectively. For m = 5, we find that randomized plurality is better than every
other rule, regardless of the value of ϕ. But as m grows larger, we can see that random committee
member rules begin to perform almost as well as randomized positional scoring rules for ϕ ⩽ 0.5. In
addition, as we have seen in Section 5, when ϕ grows large (moving towards the impartial culture),
randomized positional scoring rules outperform deterministic and random committee member rules
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as well as the uniform benchmark. Overall, these plots reinforce the claim we made in Section 5 that
there almost always seems to be an explainable randomized rule that achieves better efficiency than
deterministic rules.

Figure 2d is the counterpart of Figure 1d presented in Section 5, where instead of plotting the (average)
best value of k against ϕ, we plot the (average) distortion achieved at the said best value of k against
ϕ, for various random committee member rules. In a sense, this shows the limit of how well each
random committee member rule can perform, when paired with its corresponding optimal k. As we
can see, all the four rules we consider achieve approximately the same average distortion under these
optimized conditions, which increases almost linearly with ϕ.

Figure 3 shows the value of k that yields the minimum distortion for different scoring vectors
as a function of m, averaged over 100 runs and fixing the value of ϕ ∈ {0.1, 0.5, 1}. Recall that
theoretically, the value of k that optimizes the worst-case distortion is between Ω(m2/3) and O(m4/5).
For optimizing the average distortion, it turns out that the best k is close to 1 when ϕ is small, but as
ϕ grows the best k gets closer to m. The growth as a function of m is highly sublinear for small ϕ,
but almost linear for large ϕ.

We have also presented the (average) distortion achieved at these best values of k. Once again, we
can notice that while the average distortion certainly grows with m, the different random committee
member rules we consider perform about the same when paired with their optimal k. This average
distortion is small when ϕ is small, and is approximately

√
m for ϕ = 1. An interesting observation

is that for relatively small values of ϕ (i.e., ϕ = 0.1 and ϕ = 0.5), the distortion is very similar to
the (average) best value of k. This indicates that for these values of ϕ, it may be the case that the
optimal alternative is almost always part of the committee, for all four of the employed voting rules.
Further, since k is small, not much preference information is observed. Hence, the worst case social
welfare of any other alternatives included in the committee can be very small, bringing the distortion
of choosing a random committee member close to the inverse of the probability of choosing the
optimal alternative from the committee, which is k.
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Figure 2: All figures show results averaged over 150 runs along with the standard
error. Figures 2a to 2c share the legend on the left.
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(a) Best value of k based on m, for ϕ = 0.1.
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(c) Best value of k based on m, for ϕ = 0.5.
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(e) Best value of k based on m, for ϕ = 1.
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(f) Average distortion with best k based on m, for ϕ =
1.

Figure 3: All figures show results averaged over 100 runs along with the standard error.
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